設(shè)雙曲線C:(a>0,b>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).若以F為圓心,F(xiàn)O為半徑的圓與雙曲線C的一條漸近線交于點(diǎn)A(不同于O點(diǎn)),則△OAF的面積為   
【答案】分析:由雙曲線C:(a>0,b>0)可取其一條漸近線方程為y=且與聯(lián)立可得故A()所以S△OFA=|OF||yA|==ab
解答:解:∵雙曲線C:(a>0,b>0)
∴不妨設(shè)其中的一條漸近線方程為:y=且F(c,0),a2+b2=c2
令y=聯(lián)立可得:x=0,x=
所以y=0,y=
故A(,
所以S△OFA=|OF||yA|==ab
故答案為:ab
點(diǎn)評:此題主要考查了利用雙曲線的基本性質(zhì)來求△OAF的面積.關(guān)鍵是會求漸近線方程并且和方程聯(lián)立求A點(diǎn)的坐標(biāo)最后代入面積公式S△OFA=|OF||yA|同時(shí)結(jié)合a2+b2=c2化簡即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設(shè)直線l與y軸的交點(diǎn)為P,且=,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設(shè)直線l與y軸的交點(diǎn)為P,且=,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三第二次模擬考試數(shù)學(xué)試卷 題型:填空題

設(shè)雙曲線C:a>0,b>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).若以F為圓心,FO為半徑的圓與雙曲線C的一條漸近線交于點(diǎn)A(不同于O點(diǎn)),則△OAF的面積為                            

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三第二次模擬考試數(shù)學(xué)試卷 題型:填空題

設(shè)雙曲線C:a>0,b>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).若以F為圓心,FO為半徑的圓與雙曲線C的一條漸近線交于點(diǎn)A(不同于O點(diǎn)),則△OAF的面積為                            

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省冀州中學(xué)2012屆高二上學(xué)期第二次月考(數(shù)學(xué)理) 題型:解答題

 設(shè)雙曲線Ca>0,b>0)的離心率為e,若直線l: x與兩條漸近線相交于P、Q兩點(diǎn),F為右焦點(diǎn),△FPQ為等邊三角形.

。1)求雙曲線C的離心率e的值;

。2)若雙曲線C被直線yaxb截得的弦長為,求雙曲線c的方程.

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案