已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且.

(1)求橢圓的方程;

(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

 

【答案】

(1)(2)圓必過(guò)定點(diǎn)

【解析】

試題分析:解:(1)設(shè)點(diǎn)的坐標(biāo)分別為,則,故,可得

所以,,

,所以橢圓的方程為

(2)設(shè)的坐標(biāo)分別為,則. 由,可得,即,

又圓的圓心為半徑為,故圓的方程為,即,也就是,令,可得,

故圓必過(guò)定點(diǎn)

考點(diǎn):橢圓的定義,直線與圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了直線與圓的位置關(guān)系,以及橢圓的定義的運(yùn)用屬于九重天。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)

已知橢圓)過(guò)點(diǎn)(0,2),離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)定點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線斜率的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省萊蕪市高三12月測(cè)試文科數(shù)學(xué)卷(解析版) 題型:解答題

已知橢圓)過(guò)點(diǎn)(0,2),離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過(guò)定點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線斜率的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆遼寧省高二12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。

(1)求橢圓C的方程;

(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年陜西省高三月考(七)文科數(shù)學(xué)試卷 題型:解答題

(本題滿分13分) 已知橢圓)過(guò)點(diǎn)(0,2),離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于兩點(diǎn),求.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省高二上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓C:過(guò)點(diǎn),且長(zhǎng)軸長(zhǎng)等于4.

   (1)求橢圓C的方程;

(2)是橢圓C的兩個(gè)焦點(diǎn),⊙O是以為直徑的圓,直線與⊙O相切,并與橢圓C交于不同的兩點(diǎn)A、B,若,求的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案