19.設(shè)函數(shù)f(x)=|x-$\frac{1}{a}$|+|x+a|≥m.則m的最大值是2.

分析 利用絕對值不等式、基本不等式,可得f(x)=|x-$\frac{1}{a}$|+|x+a|≥|a+$\frac{1}{a}$|=|a|+|$\frac{1}{a}$|≥2,利用條件,即可求出m的最大值.

解答 解:函數(shù)f(x)=|x-$\frac{1}{a}$|+|x+a|≥|a+$\frac{1}{a}$|=|a|+|$\frac{1}{a}$|≥2,
∵函數(shù)f(x)=|x-$\frac{1}{a}$|+|x+a|≥m,
∴m≤2,
∴m的最大值是2.
故答案為:2.

點評 本題考查絕對值不等式、基本不等式,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖是某幾何體的三視圖(單位:cm),正視圖是等腰梯形,俯視圖中的曲線是兩個同心的半圓,側(cè)視圖是直角梯形.則該幾何體的體積等于( 。
A.28 πcm3B.14πcm3C.7πcm3D.56πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在直三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點E,F(xiàn)分別在棱BB1,CC1上,且C1F=$\frac{1}{3}$C1C,BE=$\frac{1}{3}$BB1
(Ⅰ)證明:AC⊥平面A1ABB1
(Ⅱ)求直線AA1與平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(m,2),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m等于( 。
A.$\sqrt{2}$B.$\sqrt{2}$或$-\sqrt{2}$C.$-\sqrt{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果函數(shù)y=|cos(ωx+$\frac{π}{4}$)|的圖象關(guān)于直線x=π對稱,則正實數(shù)ω的最小值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等差數(shù)列{an}的前n項和為Sn,若S13=78,則a2+a5+a9+a12=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為 4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-2,-1),則雙曲線的焦距為( 。
A.2B.$\sqrt{5}$C.$\sqrt{10}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=1,則|2$\overrightarrow$-$\overrightarrow{a}$|=( 。
A.2B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{x},x<1}\\{lnx,x≥1}\end{array}\right.$,則方程f(f(a))=1解的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案