7.若二項式(ax-$\frac{1}{x}$)6展開式中各項系數(shù)之和為1,則x4的系數(shù)為-192.

分析 根據(jù)題意,利用x=1求出展開式各項系數(shù)的和與a的值,再利用二項式展開式的通項求出展開式中x4項的系數(shù).

解答 解:二項式(ax-$\frac{1}{x}$)6展開式中各項系數(shù)之和為1,
令x=1,得(a-1)6=1,
解得a=2或a=0(不合題意,舍去);
∴二項式${(2x-\frac{1}{x})}^{6}$展開式的通項為
Tr+1=26-r•(-1)rC6rx6-2r,
令6-2r=4,解得r=1,
∴展開式中x4項的系數(shù)為
-25•C61=-192.
故答案為:-192.

點評 本題考查了利用二項式展開式的通項公式求展開式中特定項的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x3+a是奇函數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求證:f(x)是(-∞,+∞)上的增函數(shù);
(Ⅲ)若對任意的θ∈R,不等式f(sin2θ-msinθ)+f(2sinθ-3)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在平行四邊形ABCD中O是對角線交點,E是OD中點,連接AE交CD于F,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,則用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AF}$=$-\frac{4}{3}\overrightarrow{a}-\frac{2}{3}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x+1)是周期為2的奇函數(shù),當x∈[-1,0]時,f(x)=-2x2-2x,則f(-$\frac{3}{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,點(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{11}{2}$上.數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項和為153.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設cn=$\frac{3}{(2{a}_{n}-11)(2_{n}-1)}$,數(shù)列{cn}的前n項和為Tn,求Tn及使不等式Tn<$\frac{k}{2014}$對一切n都成立的最小正整數(shù)k的值;
(3)設f(n)=$\left\{\begin{array}{l}{{a}_{n}(n=2l-1,l∈{N}^{*})}\\{_{n}(n=2l,n∈{N}^{*})}\end{array}\right.$問是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=x-cos2x,則f($\frac{π}{16}$)+f($\frac{2π}{16}$)+f($\frac{3π}{16}$)+…+f($\frac{7π}{16}$)=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知復數(shù)z滿足|z|=2,且ω=z2-z+4,試求|ω|的最值及取得最值時的復數(shù)z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+4,x≥1}\\{lo{g}_{2}(1-x),x<1}\end{array}\right.$,則f(f(-1))等于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{1}{{4}^{x}+1}$圖象的對稱中心為(0,$\frac{1}{2}$).

查看答案和解析>>

同步練習冊答案