分析 (1)不等式f(x)≤3就是|x-a|≤3,求出它的解集,與{x|-1≤x≤5}相同,求實(shí)數(shù)a的值;
(2)在(1)的條件下,f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,根據(jù)f(x)+f(x+5)的最小值≥m,可求實(shí)數(shù)m的取值范圍.
解答 解:(1)由f(x)≤3得|x-a|≤3,
解得a-3≤x≤a+3.
又已知不等式f(x)≤3的解集為{x|-1≤x≤5},
所以a-3=-1且a+3=5,解得a=2.(6分)
(2)當(dāng)a=1時(shí),f(x)=|x-1|.
設(shè)g(x)=f(x)+f(x+5)=|x-1|+|x+4|,
所以當(dāng)x<-4時(shí),g(x)>5;
當(dāng)-4≤x≤1時(shí),g(x)=5;
當(dāng)x>1時(shí),g(x)>5.
綜上可得,g(x)的最小值為5.
從而,若f(x)+f(x+5)≥m
即g(x)≥m對一切實(shí)數(shù)x恒成立,則m的取值范圍為(-∞,5].(12分)
點(diǎn)評 本題考查函數(shù)恒成立問題,絕對值不等式的解法,考查轉(zhuǎn)化思想,是中檔題,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | [3,+∞) | C. | (-∞,0]∪[3,+∞) | D. | (-∞,0)∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
收入x(萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(萬元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com