A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
分析 根據(jù)題意,設(shè)虛軸的一個端點M(0,b),結(jié)合焦點F1、F2的坐標和∠F1MF2=120°,得到c=$\sqrt{3}$b,再用平方關(guān)系化簡得c=$\frac{\sqrt{6}}{2}$a,根據(jù)離心率計算公式即可得到該雙曲線的離心率.
解答 解:雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
可得虛軸的一個端點M(0,b),F(xiàn)1(-c,0),F(xiàn)2(-c,0),
設(shè)∠F1MF2=120°,得c=$\sqrt{3}$b,
平方得c2=3b2=3(c2-a2),
可得3a2=2c2,
即c=$\frac{\sqrt{6}}{2}$a,
得離心率e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故選:B.
點評 本題給出雙曲線兩個焦點對虛軸一端的張角為120度,求雙曲線的離心率.著重考查了雙曲線的標準方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點對稱 | B. | 關(guān)于x軸對稱 | ||
C. | 關(guān)于直線x=-$\frac{π}{6}$對稱 | D. | 關(guān)于點($\frac{π}{6}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21 | B. | 14 | C. | 7 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1)∪(3,4) | B. | [-1,1]∪[3,4) | C. | (1,3) | D. | (-∞,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com