8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點與虛軸的一個端點構(gòu)成一個角為120°的三角形,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

分析 根據(jù)題意,設(shè)虛軸的一個端點M(0,b),結(jié)合焦點F1、F2的坐標和∠F1MF2=120°,得到c=$\sqrt{3}$b,再用平方關(guān)系化簡得c=$\frac{\sqrt{6}}{2}$a,根據(jù)離心率計算公式即可得到該雙曲線的離心率.

解答 解:雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
可得虛軸的一個端點M(0,b),F(xiàn)1(-c,0),F(xiàn)2(-c,0),
設(shè)∠F1MF2=120°,得c=$\sqrt{3}$b,
平方得c2=3b2=3(c2-a2),
可得3a2=2c2
即c=$\frac{\sqrt{6}}{2}$a,
得離心率e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故選:B.

點評 本題給出雙曲線兩個焦點對虛軸一端的張角為120度,求雙曲線的離心率.著重考查了雙曲線的標準方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若數(shù)列{an}滿足:a1=0,a2=3且(n-1)an+1=(n+1)an-n十1(n∈N*,n≥2),數(shù)列{bn}滿足bn=$\sqrt{{a}_{n}+1}$•$\sqrt{{a}_{n+1}+1}$•($\frac{8}{11}$)n-1,則數(shù)列{bn}的最大項為第6項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=2sin(4x-$\frac{2π}{3}$)的圖象( 。
A.關(guān)于原點對稱B.關(guān)于x軸對稱
C.關(guān)于直線x=-$\frac{π}{6}$對稱D.關(guān)于點($\frac{π}{6}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若拋物線y2=2px(p>0)的焦點與雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{7}=1$的右焦點重合,則p的值為( 。
A.2B.2$\sqrt{2}$C.8D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=$\sqrt{2}$,M為A1B1的中點,則AM與平面AA1C1C所成角的正切值為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線的頂點在原點,焦點F在x軸的正半軸,過拋物線的焦點F作直線l,交拋物線與A,B兩點,交拋物線的準線于點C,$若\overrightarrow{CB}=3\overrightarrow{BF}$,則直線l的斜率kl=±2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線M的焦點F1,F(xiàn)2在x軸上,直線$\sqrt{7}x+3y=0$是雙曲線M的一條漸近線,點P在雙曲線M上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,如果拋物線y2=16x的準線經(jīng)過雙曲線M的一個焦點,那么$|\overrightarrow{P{F_1}}|•|\overrightarrow{P{F_2}}|$=( 。
A.21B.14C.7D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1-\frac{{\sqrt{3}}}{2}t\end{array}\right.$( t為參數(shù))傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|-1≤x<4},B={x|x2-4x+3<0},則A∩(∁RB)可表示為(  )
A.[-1,1)∪(3,4)B.[-1,1]∪[3,4)C.(1,3)D.(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊答案