一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點P反射后,恰好穿過點F2(1,0).
(Ⅰ)求P點的坐標(biāo);
(Ⅱ)求以F1、F2為焦點且過點P的橢圓C的方程.
【答案】分析:(Ⅰ)先求F1關(guān)于l的對稱點為F(m,n),再求直線F2F的方程,然后求P點的坐標(biāo);
(Ⅱ)根據(jù)橢圓的定義,求出a、c、b,即可求得橢圓方程.
解答:解:(Ⅰ)設(shè)F1關(guān)于l的對稱點為F(m,n),
,(3分)
解得m=,n=,即F(),(4分)
故直線F2F的方程為x+7y-1=0.(5分)
,解得P().(6分)
(Ⅱ)因為PF1=PF,根據(jù)橢圓定義,得
2a=PF1+PF2=PF+PF2=FF2
=,
所以a=.(8分)
又c=1,所以b=1.
所以橢圓C的方程.(12分)
點評:本題考查直線關(guān)于直線對稱的問題,兩條直線的交點,橢圓的定義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點P反射后,恰好穿過點F2(1,0).      
(Ⅰ)求點F1關(guān)于直線l的對稱點F1′的坐標(biāo);
(Ⅱ)求以F1、F2為焦點且過點P的橢圓C的方程;
(Ⅲ)設(shè)直線l與橢圓C的兩條準(zhǔn)線分別交于A、B兩點,點Q為線段AB上的動點,求點Q 到F2的距離與到橢圓C右準(zhǔn)線的距離之比的最小值,并求取得最小值時點Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點P反射后,恰好穿過點F2(1,0).
(Ⅰ)求P點的坐標(biāo);
(Ⅱ)求以F1、F2為焦點且過點P的橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點D反射后,恰好穿過點F2(1,0),
(1)求以F1、F2為焦點且過點D的橢圓C的方程;
(2)從橢圓C上一點M向以短軸為直徑的圓引兩條切線,切點分別為A、B,直線AB與x軸、y軸分別交于點P、Q.求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:2x-y+3=0上一點P反射后,恰好穿過點F2(1,0).
(1)求P點的坐標(biāo);
(2)求以F1、F2為焦點且過點P的橢圓C的方程;
(3)設(shè)點Q是橢圓C上除長軸兩端點外的任意一點,試問在x軸上是否存在兩定點A、B,使得直線QA、QB的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點A、B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點F1(-1,0)出發(fā),經(jīng)直線l:x+2y+6=0上一點M反射后,恰好穿過點F2(1,0).
(1)求點F1關(guān)于直線l的對稱點F'1的坐標(biāo);
(2)求以F1、F2為焦點且過點M的橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案