分析 (Ⅰ)由二倍角公式和輔助角公式化簡,由圖象上兩個相鄰的最高點之間的距離為π,即可得到ω,由此得到單調(diào)增區(qū)間.
(Ⅱ)由f(θ)=$\frac{2}{3}$,得到$sin(2θ-\frac{π}{6})=\frac{1}{3}$.由此由二倍角公式得到結(jié)果.
解答 解:(Ⅰ)$f(x)=2\sqrt{3}sinωxcosωx-2{cos^2}ωx+1$
=$\sqrt{3}(2sinωxcosωx)-(2{cos^2}ωx-1)$=$\sqrt{3}sin2ωx-cos2ωx$=$2sin(2ωx-\frac{π}{6})$.
由題意知,函數(shù)f(x)的最小正周期為π,
則$\frac{2π}{2ω}=π$,故ω=1.
所以f(x)=$2sin(2x-\frac{π}{6})$,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}(k∈Z)$,
得$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}(k∈Z)$,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$.
(Ⅱ)由f(x)=$2sin(2x-\frac{π}{6})$,
$f(θ)=\frac{2}{3}$,得$sin(2θ-\frac{π}{6})=\frac{1}{3}$.
$cos(\frac{π}{3}-4θ)=cos(4θ-\frac{π}{3})=cos2(2θ-\frac{π}{6})=1-2{sin^2}(2θ-\frac{π}{6})=1-2×\frac{1}{9}=\frac{7}{9}$.
點評 本題考查由二倍角公式和輔助角公式,以及數(shù)形結(jié)合,即可得到ω.
科目:高中數(shù)學(xué) 來源: 題型:解答題
優(yōu)秀生 | 非優(yōu)秀生 | 合計 | |
男生 | |||
女生 | |||
合計 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com