5.某校在兩個班進(jìn)行學(xué)習(xí)方式對比試驗,半年后進(jìn)行了一次檢測,試驗班與對照班成績統(tǒng)計如2×2列聯(lián)表所示(單位:人).
80及80分以上80分以下合計
試驗班301040
對照班18m40
合計4832n
(1)求m,n
(2)你有多大把握認(rèn)為“成績與學(xué)習(xí)方式有關(guān)系”?
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

分析 (1)根據(jù)列聯(lián)表求出m、n的值;
(2)根據(jù)表中數(shù)據(jù),計算觀測值,對照臨界值表得出結(jié)論.

解答 解:(1)根據(jù)題意,m+18=40,解得m=22;
且n=40+40=80;
(2)根據(jù)表中數(shù)據(jù),計算
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{80{×(30×22-18×10)}^{2}}{48×32×40×40}$=7.5>6.635,
對照臨界值表知,有99%的把握認(rèn)為成績與學(xué)習(xí)方式有關(guān).

點評 本題考查了列聯(lián)表與獨立性檢驗的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在一次贈書活動中,將2本不同的小說與2本不同的詩集贈給2名學(xué)生,每名學(xué)生2本書,則每人分別得到1本小說與1本詩集的概率為(  )
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{1}{3}$ax3+ax2+x+1有極值的充要條件是a<0或a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖網(wǎng)絡(luò)紙上小正方形的邊長為1,粗實(虛)線畫出的是某幾何體的三視圖,則該幾何圖的體積為( 。
A.12B.18C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.觀察下面一組等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根據(jù)上面等式猜測S2n-1=(4n-3)(an+b),則a2+b2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={-1,0,1},B={-1,1},則集合C={a+b|a∈A,b∈B}中的元素個數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,在學(xué)習(xí)積極性高的25名學(xué)生中有7名不太主動參加班級工作,而在積極參加班級工作的24名學(xué)生中有6名學(xué)生學(xué)習(xí)積極性一般.
(1)填寫下面列聯(lián)表;
積極參加班級工作不太主動參加班級工作合計
學(xué)習(xí)積極性高
學(xué)習(xí)積極性一般
合計
(2)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(3)試運用獨立性檢驗的思想方法分析:能否在犯錯誤概率不超過0.001的前提下認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系.
(觀測值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個幾何體的三視圖如圖所示,則它的體積為( 。
A.$\frac{20}{3}$B.$\frac{40}{3}$C.$\frac{8}{3}$D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個H值.現(xiàn)有如下數(shù)列:①an=1-2n;②an=sinn;③an=$\frac{n-2}{{e}^{n-3}}$④an=lnn-n,則存在H值的數(shù)列有(  )個.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案