分析 (Ⅰ)運(yùn)用拋物線的焦點(diǎn)坐標(biāo),計(jì)算即可得到所求方程;
(Ⅱ)由題可知:直線AB的方程為y=k(x-1)(k≠0),準(zhǔn)線l的方程為 x=-1,設(shè)A(x1,y1),B(x2,y2),聯(lián)立拋物線的方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,化簡(jiǎn)整理,運(yùn)用不等式的性質(zhì),即可得到所求范圍.
解答 解:(Ⅰ)因?yàn)榻裹c(diǎn)F(1,0),
所以$\frac{p}{2}=1$,解得p=2;
(Ⅱ)由題可知:直線AB的方程為y=k(x-1)(k≠0),
準(zhǔn)線l的方程為 x=-1.
設(shè)A(x1,y1),B(x2,y2),
則$|{PA}|=\sqrt{1+{k^2}}({{x_1}+1}),|{PB}|=\sqrt{1+{k^2}}({{x_2}+1}),|{PF}|=2\sqrt{1+{k^2}}$.
由$\left\{\begin{array}{l}y=k({x-1})\\{y^2}=4x\end{array}\right.$消去y得,k2x2-(2k2+4)x+k2=0,
故${x_1}+{x_2}=\frac{{2{k^2}+4}}{k^2},{x_1}{x_2}=1$.
由|PA|+|PB|=λ|PA|•|PB|•|PF|得,
$({{x_1}+1})+({{x_2}+1})=2λ({1+{k^2}})•({{x_1}+1})•({{x_2}+1})$,
解得$λ=\frac{1}{{2({1+{k^2}})}}$.
因?yàn)?k∈[{\frac{1}{2},1}]$,所以$λ∈[{\frac{1}{4},\frac{2}{5}}]$.
點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),考查直線和拋物線的方程聯(lián)立,運(yùn)用韋達(dá)定理,注意運(yùn)用弦長(zhǎng)公式和拋物線的定義,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {2,3} | C. | {0,1} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | cosα | B. | -sinα | C. | -cosα | D. | sinα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 22 | B. | 33 | C. | 44 | D. | 55 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com