【題目】已知函數(shù)).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若對(duì)為自然對(duì)數(shù)的底數(shù)),恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間 (3)

【解析】分析:(1)求出,,切線方程為。

(2)先求定義域,再求導(dǎo),,因?yàn)?/span>,所,所以導(dǎo)數(shù)的零點(diǎn)只有一個(gè),可求得單調(diào)區(qū)間。(3)對(duì),恒有成立,等價(jià)于對(duì),恒有成立,構(gòu)造函數(shù),即: ,利用導(dǎo)數(shù)可求得范圍,注意題目中。

詳解:(1)當(dāng)時(shí),

,又

曲線在點(diǎn)處的切線方程為:

即:

(2)

時(shí),

,解得

,解得

的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間

(3)由題意,對(duì),恒有成立,等價(jià)于對(duì),恒有

成立,即:

設(shè),

上恒成立

單調(diào)遞增

只需;即:

,∴

實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期末考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是.

(1)若成績(jī)?cè)?/span>的學(xué)生中男生比女生多一人,從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人都是男生的概率;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】蘭天購(gòu)物廣場(chǎng)某營(yíng)銷部門隨機(jī)抽查了100名市民在2018年國(guó)慶長(zhǎng)假期間購(gòu)物廣場(chǎng)的消費(fèi)金額,所得數(shù)據(jù)如表,已知消費(fèi)金額不超過3千元與超過3千元的人數(shù)比恰為.

消費(fèi)金額(單位:千元)

人數(shù)

頻率

8

0.08

12

0.12

8

0.08

7

0.07

合計(jì)

100

1.00

(1)試確定,,的值,并補(bǔ)全頻率分布直方圖(如圖);

(2)用分層抽樣的方法從消費(fèi)金額在、的三個(gè)群體中抽取7人進(jìn)行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這7人中隨機(jī)選取2人,則此2人來自同一群體的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (x>0,e為自然對(duì)數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù). (Ⅰ)當(dāng)a=2時(shí),求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對(duì)一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為矩形,測(cè)棱底面,,點(diǎn)的中點(diǎn),作


Ⅰ)求證:平面平面

Ⅱ)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點(diǎn)的多面體中, 平面, 平面

1)請(qǐng)?jiān)趫D中作出平面,使得,且,并說明理由;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案