已知函數(shù)f(x)=2sin(ωx-
π
6
)(ω>0)的最小正周期為π,則f(x)的單調(diào)遞增區(qū)間為
 
考點(diǎn):三角函數(shù)的周期性及其求法
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由周期求得ω=2,令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,求的x的范圍,可得函數(shù)的增區(qū)間.
解答: 解:由題意可得T=π=
ω
,∴ω=2.
令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,求得 kπ-
π
6
≤x≤kπ+
π
3
,
故函數(shù)的增區(qū)間為[kπ-
π
6
,kπ+
π
3
],k∈z,
故答案為:[kπ-
π
6
,kπ+
π
3
],k∈z.
點(diǎn)評(píng):本題主要考查三角函數(shù)的周期性和求法,正弦函數(shù)的增區(qū)間,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對(duì)邊,且c2+ab=a2+b2,則角C的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
2x+y-2≥0
x-2y+k≥0
x-1≤0
,若目標(biāo)函數(shù)z=3x-2y的取值范圍是[-4,3],則常數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,Sn=3n-2,n∈N*,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類(lèi),如圖中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱(chēng)為五角形數(shù),其中第1個(gè)五角形數(shù)記作a1=1,第2個(gè)五角形數(shù)記作a2=5,第3個(gè)五角形數(shù)記作a3=12,第4個(gè)五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,a5=
 
,an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)f(x)=
x
x+2
(x>0),且f1(x)=f(x)=
x
x+2
,當(dāng)n∈N*且n≥2時(shí),fn(x)=f[fn-1(x)],猜想fn(x)(n∈N*)的表達(dá)式
 

(2)用反證法證明命題“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除“時(shí),假設(shè)應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中通項(xiàng)an=2n-19,那么這個(gè)數(shù)列的前n項(xiàng)和Sn的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
a
=(cosα,sinα),
b
=(cos(
π
3
+α),sin(
π
3
+α)),則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x4-4x+3在區(qū)間[-1,3]上的最小值為( 。
A、72B、36C、12D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案