A. | (-1,0)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-$\sqrt{2}$,0)∪(0,$\sqrt{2}$) | D. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) |
分析 由雙曲線的對稱性知D在x軸上,設(shè)D(x,0),則由BD⊥AB得$\frac{\frac{^{2}}{a}}{c-x}$•$\frac{\frac{^{2}}{a}}{c-a}$=-1,求出c-x,利用D到直線BC的距離小于a+$\sqrt{{a^2}+{b^2}}$,即可得出結(jié)論.
解答 解:由題意,A(a,0),B(c,$\frac{^{2}}{a}$),C(c,-$\frac{^{2}}{a}$),由雙曲線的對稱性知D在x軸上,
設(shè)D(x,0),則由BD⊥AB得$\frac{\frac{^{2}}{a}}{c-x}$•$\frac{\frac{^{2}}{a}}{c-a}$=-1,
∴c-x=$\frac{^{4}}{{a}^{2}(a-c)}$,
∵D到直線BC的距離小于a+$\sqrt{{a^2}+{b^2}}$,
∴c-x=|$\frac{^{4}}{{a}^{2}(a-c)}$|<a+$\sqrt{{a^2}+{b^2}}$,
∴$\frac{^{4}}{{a}^{2}}$<c2-a2=b2,
∴0<$\frac{a}$<1,
∴雙曲線的漸近線斜率的取值范圍是(-1,0)∪(0,1).
故選:A.
點(diǎn)評 本題考查雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,確定D到直線BC的距離是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分而不必要條件 | ||
C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com