7.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+t}\\{y=1+t}\end{array}}$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}cos2θ=4(ρ>0,\frac{3π}{4}<θ<\frac{5π}{4})$,則直線l與曲線C的交點(diǎn)的極坐標(biāo)為(2,π).

分析 求出直線以及曲線的直角坐標(biāo)方程,然后求解交點(diǎn)坐標(biāo),轉(zhuǎn)化我2極坐標(biāo)即可.

解答 解:直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+t}\\{y=1+t}\end{array}}$(t為參數(shù)),它的直角坐標(biāo)方程為:x-y+2=0;
曲線C的極坐標(biāo)方程為${ρ^2}cos2θ=4(ρ>0,\frac{3π}{4}<θ<\frac{5π}{4})$,
可得它的直角坐標(biāo)方程為:x2-y2=4,x<0.
由$\left\{\begin{array}{l}x-y+2=0\\{x}^{2}-{y}^{2}=4\end{array}\right.$,可得x=-2,y=0,
交點(diǎn)坐標(biāo)為(-2,0),
它的極坐標(biāo)為(2,π).
故答案為:(2,π).

點(diǎn)評(píng) 本題考查曲線的極坐標(biāo)方程直線的參數(shù)方程與普通方程的互化,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.在正方體中,設(shè)BC的中點(diǎn)為M、GH的中點(diǎn)為N.
(Ⅰ)請(qǐng)將字母F、G、H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由);
(Ⅱ)證明:直線MN∥平面BDH;
(Ⅲ)求二面角A-EG-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四邊形ABCD為菱形,∠ABC=120°,E,F(xiàn)是平面ABCD同一側(cè)的兩點(diǎn),BE丄平面ABCD,DF丄平面 ABCD,BE=2DF,AE丄EC.
(Ⅰ)證明:平面AEC丄平面AFC
(Ⅱ)求直線AE與直線CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.A∩B=∅C.A$\stackrel{?}{≠}$BD.B$\stackrel{?}{≠}$A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過(guò)F作AF的垂線與雙曲線交于B,C兩點(diǎn),過(guò)B,C分別作AC,AB的垂線,兩垂線交于點(diǎn)D.若D到直線BC的距離小于a+$\sqrt{{a^2}+{b^2}}$,則該雙曲線的漸近線斜率的取值范圍是( 。
A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-$\sqrt{2}$,0)∪(0,$\sqrt{2}$)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)
(Ⅰ)若f(x)在x=0處取得極值,確定a的值,并求此時(shí)曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,則tanβ=( 。
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{5}{7}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某學(xué)校為了了解三年級(jí)、六年級(jí)、九年級(jí)這三個(gè)年級(jí)之間的學(xué)生視力是否存在顯著差異,擬從這三個(gè)年級(jí)中按人數(shù)比例抽取部分學(xué)生進(jìn)行調(diào)查,則最合理的抽樣方法是( 。
A.抽簽法B.系統(tǒng)抽樣法C.分層抽樣法D.隨機(jī)數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且PO=OB=1,
(Ⅰ)若D為線段AC的中點(diǎn),求證;AC⊥平面PDO;
(Ⅱ)求三棱錐P-ABC體積的最大值;
(Ⅲ)若BC=$\sqrt{2}$,點(diǎn)E在線段PB上,求CE+OE的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案