分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)周期性、單調(diào)性得出結(jié)論.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,由題意,函數(shù)y=g(x)的圖象與直線y=-k在區(qū)間上只有一個(gè)交點(diǎn),從而求得k的范圍.
解答 解:(1)$f(x)=\sqrt{3}sinωxcosωx+{cos^2}ωx-\frac{1}{2}$=$\frac{{\sqrt{3}}}{2}sin2ωx+\frac{cos2ωx+1}{2}-\frac{1}{2}$=$sin(2ωx+\frac{π}{6})$,
因?yàn)閒(x)的最小正周期為$\frac{π}{2}$,所以$2ω=\frac{2π}{T}=4$,即$f(x)=sin(4x+\frac{π}{6})$.
因?yàn)?x∈[{-\frac{π}{8},\frac{π}{4}}]$,所以$4x+\frac{π}{6}∈[{-\frac{π}{3},\frac{7π}{6}}]$,
當(dāng)$\frac{π}{2}≤4x+\frac{π}{6}≤\frac{7π}{6}$時(shí),即$\frac{π}{12}≤x≤\frac{π}{4}$時(shí),f(x)為減函數(shù),
所以f(x)的減區(qū)間為$[{\frac{π}{12},\frac{π}{4}}]$.
(2)將函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),
得到$y=sin(2x+\frac{π}{6})$,再將$y=sin(2x+\frac{π}{6})$的圖象向右平移$\frac{π}{4}$個(gè)單位,得到$g(x)=sin(2x-\frac{π}{3})$.
因?yàn)?x∈[{0,\frac{π}{2}}]$,所以$2x-\frac{π}{3}∈[{-\frac{π}{3},\frac{2π}{3}}]$,g(x)∈[-$\frac{\sqrt{3}}{2}$,1],
若關(guān)于x的方程g(x)+k=0在區(qū)間$[{0,\frac{π}{2}}]$上有且只有一個(gè)實(shí)數(shù)根,
即函數(shù)y=g(x)的圖象與直線y=-k在區(qū)間上只有一個(gè)交點(diǎn),
所以$-\frac{{\sqrt{3}}}{2}≤-k<\frac{{\sqrt{3}}}{2}$或-k=1,即$-\frac{{\sqrt{3}}}{2}<k≤\frac{{\sqrt{3}}}{2}$或k=-1.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,方程根的存在性以及個(gè)數(shù)判斷,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a、b是兩條異面直線且a∥α,b∥α,a∥β,b∥β | |
B. | α內(nèi)有三個(gè)不共線點(diǎn)A、B、C到β的距離相等 | |
C. | a、b是α內(nèi)兩條直線,且a∥β,b∥β | |
D. | α、β都平行于直線a、b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 84,84 | B. | 84,85 | C. | 86,84 | D. | 84,86 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com