(本小題滿分12分)

已知點(diǎn)是函數(shù)的圖像上一點(diǎn).等比數(shù)列的前n項(xiàng)和為.數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足

(1)求數(shù)列的通項(xiàng)公式;            

(2)若數(shù)列的前項(xiàng)和為,問滿足的最小正整數(shù)是多少?

 

【答案】

(Ⅰ)();(2)的最小正整數(shù)為112.

【解析】本題是數(shù)列與函數(shù)的綜合題目,用到了列項(xiàng)相消,錯(cuò)位相減等一些數(shù)列的基本方法,綜合性比較強(qiáng),考查點(diǎn)比較全面.

(1)根據(jù)an=[f(n)-c]-[f(n-1)-c]=- 求出{an}的通項(xiàng)公式;根據(jù)Sn-Sn-1= +求出{}的通項(xiàng)公式,進(jìn)而求出Sn,bn的通項(xiàng)公式.

(2)根據(jù)bn的通項(xiàng)公式,通過列項(xiàng)相消的方法求出{ }的前n項(xiàng)和為Tn進(jìn)而解出n.

解:(Ⅰ)

 ,,

 .

又?jǐn)?shù)列成等比數(shù)列,,所以;

又公比,所以;

,,

數(shù)列構(gòu)成一個(gè)首項(xiàng)為1公差為1的等差數(shù)列, ,

當(dāng),  ;n=1時(shí),也適合上式。

();

;

,滿足的最小正整數(shù)為112.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案