5.已知f(x)=ax2+bx+c,求證:f′(x0)=2ax0+b.

分析 先求導(dǎo),再代值即可證明.

解答 證明:∵f(x)=ax2+bx+c,
∴f′(x)=2ax+b,
∴f′(x0)=2ax0+b.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(-1,-2),$\overrightarrow$=(m,m+1),$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|等于( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{5}{9}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}的首項(xiàng)為15,滿足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}+2n}{{a}_{n+1}-2n}$,an+an+1≠0,且$\frac{{a}_{n}}{n}$>λ2-3λ恒成立,則實(shí)數(shù)λ的取值范圍為( 。
A.-2<λ<3B.λ≤-2或λ≥3C.-$\frac{3}{2}$<λ<$\frac{9}{2}$D.λ≤-$\frac{3}{2}$或λ≥$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=2sin(3x+φ)(-π<φ<π)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,且對任意的x∈R有g(shù)(x)+g($\frac{π}{4}$)≥0,則g(x)的單調(diào)遞增區(qū)間為( 。
A.[$\frac{kπ}{3}$+$\frac{π}{4}$,$\frac{kπ}{3}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{3}$+$\frac{π}{12}$,$\frac{kπ}{3}$+$\frac{π}{4}$],k∈Z
C.[$\frac{4kπ}{3}$+$\frac{π}{4}$,$\frac{4kπ}{3}$+$\frac{11π}{12}$],k∈ZD.[$\frac{4kπ}{3}$-$\frac{5π}{12}$,$\frac{4kπ}{3}$+$\frac{π}{4}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2$\frac{6}{{a}_{2n+1}}$,Tn為數(shù)列{bn}的前n項(xiàng)和,求使Tn=$\frac{n}{2}$+105成立的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=-\frac{1}{2}a{x^2}+(1+a)x-lnx(a∈R)$.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)a=0時(shí),設(shè)函數(shù)g(x)=xf(x)-k(x+2)+2.若函數(shù)g(x)在區(qū)間$[\frac{1}{2},+∞)$上有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a為實(shí)數(shù),函數(shù)f(x)=alnx+x2-4x.
(1)設(shè)g(x)=(a-2)x,若$?x∈[{\frac{1}{e},e}]$,使得f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.
(2)定義:若函數(shù)m(x)的圖象上存在兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為P(x0,y0),若m(x)在點(diǎn)Q(x0,m(x0))處的切線l與直線AB平行或重合,則函數(shù)m(x)是“中值平衡函數(shù)”,切線l叫做函數(shù)m(x)的“中值平衡切線”.試判斷函數(shù)f(x)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)f(x)的“中值平衡切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{2^x}\;,\;x<1\;,\;}\\{{{log}_2}x\;,\;x≥1\;,\;}\end{array}}\right.$若直線y=m與函數(shù)f(x)的圖象只有一個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是m≥2或m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{{2^{x-1}},x∈[\frac{1}{2},2)}\end{array}}\right.$,若存在x1,x2,當(dāng)0≤x1<x2<2時(shí),f(x1)=f(x2),則x1f(x2)-f(x2)的取值范圍為( 。
A.$(0,\frac{{2-3\sqrt{2}}}{4})$B.$[-\frac{9}{16},\frac{{2-3\sqrt{2}}}{4})$C.$[\frac{{2-3\sqrt{2}}}{4},-\frac{1}{2})$D.$[-\frac{9}{16},-\frac{1}{2})$

查看答案和解析>>

同步練習(xí)冊答案