【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.
【答案】解:(Ⅰ)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ )
=sinωxcos ﹣cosωxsin ﹣sin( ﹣ωx)
= sinωx﹣ cosωx
= sin(ωx﹣ ),
又f( )= sin( ω﹣ )=0,
∴ ω﹣ =kπ,k∈Z,
解得ω=6k+2,
又0<ω<3,
∴ω=2;
(Ⅱ)由(Ⅰ)知,f(x)= sin(2x﹣ ),
將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),得到函數(shù)y= sin(x﹣ )的圖象;
再將得到的圖象向左平移 個單位,得到y(tǒng)= sin(x+ ﹣ )的圖象,
∴函數(shù)y=g(x)= sin(x﹣ );
當(dāng)x∈[﹣ , ]時,x﹣ ∈[﹣ , ],
∴sin(x﹣ )∈[﹣ ,1],
∴當(dāng)x=﹣ 時,g(x)取得最小值是﹣ × =﹣ .
【解析】(1)根據(jù)兩角和的正弦公式可得到f(x)= sin(ωx﹣ ),且f()=0,即可得到ω=2,(2)根據(jù)三角函數(shù)圖象平移的規(guī)則(左加右減)可得到g(x)的解析式,由三角函數(shù)的圖象和性質(zhì)可得出g(x)的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和記為Sn , a1=2,an+1=Sn+2(n∈N*).
(Ⅰ)求{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在區(qū)間上的值域.
(1)求的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強市民的節(jié)能環(huán)保意識,某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,
(1)求圖中 的值并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在 歲的人數(shù);
(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為 ,求 的分布列及均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大;
(2)若 ,求a+c的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間的一臺機床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為, ,…, ,測量其長度(單位: ),得到如表中數(shù)據(jù):
其中長度在區(qū)間內(nèi)的零件為一等品.
(1)從上述8個零件中,隨機抽取一個,求這個零件為一等品的概率;
(2)從一等品零件中,隨機抽取3個.
①用零件的編號列出所有可能的抽取結(jié)果;
②求這3個零件長度相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知,,底面,且,,為的中點,在上,且.
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 的左、右焦點分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(不含長軸端點),且△PF1F2面積的最大值為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直x﹣y+m=0與橢圓E交于不同的兩點A,B,且線AB的中點不在圓 內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F(xiàn)為CE的中點.
(1)求直線AF與平面ACD所成的角;
(2)求證:平面BCE⊥平面DCE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com