已知球的直徑SC=6,A,B,是該球球面上的兩點,AB=3,∠ASC=∠BSC=45°,則棱錐S-ABC的體積為( 。
A、
5
3
2
B、4
3
C、
9
3
2
D、6
3
考點:球內(nèi)接多面體
專題:計算題,空間位置關系與距離,球
分析:由題意求出SA=AC=SB=BC=3
2
,∠SAC=∠SBC=90°,說明過O,A,B的平面與SC垂直,求出三角形OAB的面積,即可求出棱錐S-ABC的體積.
解答: 解:如圖,由題意△ASC,△BSC均為等腰直角三角形,
且SA=AC=SB=BC=3
2
,
所以∠SOA=∠SOB=90°,所以SC⊥平面ABO.
又AB=3,△ABO為正三角形,則S△ABO=
3
4
×32=
9
3
4
,
進而可得:V S-ABC=V C-AOB+V S-AOB=
1
3
×
9
3
4
×6=
9
3
2

故選C.
點評:本題是基礎題,考查球的內(nèi)接三棱錐的體積,考查空間想象能力,計算能力,得出SC⊥平面ABO是本題的解題關鍵,且用了體積分割法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可估計樣本的平均重量為( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
x-1
+2sinπx(-2≤x≤5)的所有零點之和等于( 。
A、10B、8C、6D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC三內(nèi)角A,B,C所對的邊分別為a,b,c,重心為G(三角形中三邊中線的交點),若2a
GA
+3b
GB
=3c
CG
,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c∈R,且a>b,則( 。
A、(
1
2
a>(
1
2
b
B、
1
a
1
b
C、a2>b2
D、a3>b3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(3,
3
)與圓x2+y2-4x+3=0相切的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(x,y)在圓(x-2)2+(y+3)2=1上.
(1)求x+y的最大值和最小值;
(2)求
y
x
的最大值和最小值;
(3)求
x2+y2+2x-4y+5
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
x
+
1
2
4x
n的二項展開式中,前三項系數(shù)成等差數(shù)列,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一袋中有大小相同的白球和紅球共n個,其中白球m個若從中任意摸出2個球,則至少有一個紅球的概率是
3
5
,若從中有放回地摸球6次,每次摸出1球,則摸到白球的次數(shù)的期望是4,現(xiàn)從袋中不放回地摸球2次每次摸出1球.則第一次摸出紅球后,第二次摸出的還是紅球的概率是( 。
A、
1
3
B、
1
5
C、
1
6
D、
1
15

查看答案和解析>>

同步練習冊答案