【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)14%(2)有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān)
【解析】試題分析:(1)根據(jù)列聯(lián)表可知需要幫助的老年人是70人,被調(diào)查的人數(shù)是500,化簡即可;(2)計(jì)算與比較大小,若是大于表示有的把握,若小于則表示沒有的把握.
(1)試題解析:(1)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估計(jì)值為=14%;
(2)=,
由于9.967>6.635,所以有99%的把握認(rèn)為該地區(qū)的老年人是否需要幫助與性別有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面為正三角形, 底面,且, 是的中點(diǎn).
(1)求證: 平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,虛軸長為2.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線與雙曲線相交于兩點(diǎn),( 均異于左、右頂點(diǎn)),且以為直徑的圓過雙曲線的左頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價(jià)萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知標(biāo)有1~20號的小球20個(gè),若我們的目的是估計(jì)總體號碼的平均值,即20個(gè)小球號碼的平均值.試驗(yàn)者從中抽取4個(gè)小球,以這4個(gè)小球號碼的平均值估計(jì)總體號碼的平均值,按下面方法抽樣(按小號到大號排序):
(1)以編號2為起點(diǎn),系統(tǒng)抽樣抽取4個(gè)球,則這4個(gè)球的編號的平均值為____.
(2)以編號3為起點(diǎn),系統(tǒng)抽樣抽取4個(gè)球,則這4個(gè)球的編號的平均值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,記f(x)的最大值為A.
(1)求f′(x);
(2)求A;
(3)證明:|f′(x)|≤2A.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com