3.在直角坐標(biāo)系中,直線x+$\sqrt{3}$y-3=0的傾斜角是150°.

分析 由已知方程得到直線的斜率,根據(jù)斜率對于得到傾斜角.

解答 解:由已知直線的方程得到直線的斜率為$\frac{\sqrt{3}}{3}$,設(shè)傾斜角為α,則tanα=$-\frac{\sqrt{3}}{3}$,α∈[0,180°),所以α=150°;
故答案為:150°.

點評 本題考查了由已知直線方程求直線的斜率;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知正數(shù)x,y滿足|lg$\frac{x}{y}$|≤1,且|lg(x2y)|≤1,求xy的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知M(1,1)、N(3,3)則|MN|=( 。
A.8B.4C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$|\overrightarrow a|=2|\overrightarrow b|,|\overrightarrow b|≠0$,且關(guān)于x的函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}+\overrightarrow a•\overrightarrow bx$在R上有極值,則$\overrightarrow a$與$\overrightarrow b$的夾角范圍為( 。
A.$[0,\frac{π}{6})$B.$(\frac{π}{6},π]$C.$(\frac{π}{3},\frac{2π}{3}]$D.$(\frac{π}{3},π]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow$),則實數(shù)λ=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x2-2lnx的單調(diào)減區(qū)間是                                   ( 。
A.(0,1]B.[1,+∞)C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2.若雙曲線C上存在一點P,使得△PF1F2為等腰三角形,且cos∠PF1F2=$\frac{1}{8}$,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對于數(shù)列A:a1,a2,…,an,經(jīng)過變換T:交換A中某相鄰兩段的位置(數(shù)列A中的一項或連續(xù)的幾項稱為一段),得到數(shù)列T(A).例如,數(shù)列A:a1,…,ai,$\underbrace{{a_{i+1}},…,{a_{i+p}}}_M,\underbrace{{a_{i+p+1}},…,{a_{i+p+q}}}_N,{a_{i+p+q+1}},…,{a_n}$(p≥1,q≥1)
經(jīng)交換M,N兩段位置,變換為數(shù)列T(A):a1,…,ai,$\underbrace{{a_{i+p+1}},…,{a_{i+p+q}}}_N,\underbrace{{a_{i+1}},…,{a_{i+p}}}_M,{a_{i+p+q+1}},…,{a_n}$.
設(shè)A0是有窮數(shù)列,令A(yù)k+1=T(Ak)(k=0,1,2,…).
(Ⅰ)如果數(shù)列A0為3,2,1,且A2為1,2,3.寫出數(shù)列A1;(寫出一個即可)
(Ⅱ)如果數(shù)列A0為9,8,7,6,5,4,3,2,1,A1為5,4,9,8,7,6,3,2,1,A2為5,6,3,4,9,8,7,2,1,A5為1,2,3,4,5,6,7,8,9.寫出數(shù)列A3,A4;(寫出一組即可)
(Ⅲ)如果數(shù)列A0為等差數(shù)列:2015,2014,…,1,An為等差數(shù)列:1,2,…,2015,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=1+2i的實部與虛部分別為( 。
A.1,2B.1,2iC.2,1D.2i,1

查看答案和解析>>

同步練習(xí)冊答案