分析 (I)假設(shè)存在實(shí)數(shù)λ,使得數(shù)列{an}是等比數(shù)列,從而可得(2+λ)2=2(λ2+4λ+2),從而解得λ=0或λ=-4,從而討論可知數(shù)列為等比數(shù)列;
(Ⅱ)可證明an>n(n-1),(n≥3),從而利用裂項(xiàng)求和法求數(shù)列的前n項(xiàng)和即可.
解答 解:(I)假設(shè)存在實(shí)數(shù)λ,使得數(shù)列{an}是等比數(shù)列,
∵a1=2,a2=a21-a1+λ=4-2+λ=2+λ,
a3=a22-a2+λ=4-2+λ=λ2+4λ+2,
∴(2+λ)2=2(λ2+4λ+2),
解得,λ=0或λ=-4,
當(dāng)λ=0時,an=2,
故數(shù)列{an}是以2為首項(xiàng),1為公比的等比數(shù)列;
當(dāng)λ=-4時,an=$\left\{\begin{array}{l}{2,n為奇數(shù)}\\{-2,n為偶數(shù)}\end{array}\right.$,
故數(shù)列{an}是以2為首項(xiàng),-1為公比的等比數(shù)列;
綜上所述,λ=0或λ=-4.
(Ⅱ)證明:當(dāng)λ=1時,an+1=a2n-an+1=an(an-1)+1,
∵a1=2,
∴a2=a1(a1-1)+1=3,
a3=a2(a2-1)+1=7>2×3,
a4=a3(a3-1)+1=43>3×4,
不妨設(shè)an>n(n-1),(n≥3),
則an+1=an(an-1)+1>n(n-1)(n(n-1)-1)+1>n(n+1);
故$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$
<$\frac{1}{2}$$+\frac{1}{3}$+$\frac{1}{6}$+$\frac{1}{12}$+…+$\frac{1}{n(n-1)}$
=$\frac{1}{2}$$+\frac{1}{3}$+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)
=$\frac{1}{2}$$+\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$
=$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{n}$<1.
點(diǎn)評 本題考查了等比數(shù)列的應(yīng)用及裂項(xiàng)求和法的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,$\frac{\sqrt{3}}{3}$] | B. | [-1,-$\frac{\sqrt{3}}{3}$] | C. | (-∞,-$\frac{\sqrt{3}}{3}$]∪[1,+∞) | D. | [-$\frac{\sqrt{3}}{3}$,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com