20.已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱(chēng)h (x)為f (x)、g(x)在R上生成的函數(shù).
設(shè)f (x)=x2+x、g(x)=x+2,若h (x)為f (x)、g(x)在R上生成的一個(gè)偶函數(shù),且h(1)=3,則函數(shù)h(-1)=3h (x)=-3x2+6.

分析 先得到h(x)=mx2+(m+n)x+2n,根據(jù)h(x)為偶函數(shù)及h(1)=3便可得出不等式組$\left\{\begin{array}{l}{m+n=0}\\{m+2n=3}\end{array}\right.$,這樣解出m,n,便可求出h(x),并可得到h(-1)=3.

解答 解:h(x)=mf(x)+ng(x)
=m(x2+x)+n(x+2)
=mx2+(m+n)x+2n;
h(x)為偶函數(shù);
∴m+n=0①;
又h(1)=3;
∴m+m+n+2n=3②;
聯(lián)立①②解得m=-3,n=3;
∴h(-1)=3,h(x)=-3x2+6.
故答案為:3,-3x2+6.

點(diǎn)評(píng) 考查對(duì)h(x)為f(x),g(x)在R上生成函數(shù)的定義的理解,以及偶函數(shù)的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}是公差為正數(shù)的等差數(shù)列,其前n項(xiàng)和為Sn,且a2•a3=15,S4=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿(mǎn)足b1=a1,$_{n+1}-_{n}=\frac{1}{{a}_{n}•{a}_{n+1}}$.
①求數(shù)列{bn}的通項(xiàng)公式;
②是否存在正整數(shù)m,n(m≠n),使得b2,bm,bn成等差數(shù)列?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知球的表面積為4π,則球的內(nèi)接正方體的邊長(zhǎng)的長(zhǎng)為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)(m,n)在橢圓$\frac{x^2}{3}+\frac{y^2}{8}$=1上,則$\sqrt{3}$m的取值范圍是( 。
A.[-3,3]B.(-3,3)C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求與橢圓$\frac{x^2}{9}+\frac{y^2}{4}$=1相交于A?B兩點(diǎn),并且線(xiàn)段AB的中點(diǎn)為M(1,1)的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合X={x|-2≤x≤2,且x∈Z},下列關(guān)系式中成立的為(  )
A.0⊆XB.{0}∈XC.{0}⊆XD.∅∈X

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知圓C:x2+y2-4x-4y+4=0.
(1)求圓C的圓心坐標(biāo)和半徑;
(2)直線(xiàn)l過(guò)點(diǎn)A(4,0)、B(0,2),求直線(xiàn)l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式x-y>0所表示的平面區(qū)域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax2-|x|+3a-1,(a為實(shí)常數(shù)).
(1)當(dāng)a=0時(shí),求不等式f(2x)+2≥0的解集;
(2)當(dāng)a<0時(shí),求函數(shù)f(x)的最大值;
(3)若a>0,設(shè)f(x)在區(qū)間[1,2]的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案