【題目】若函數(shù)在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“飄移點”.
Ⅰ試判斷函數(shù)及函數(shù)是否有“飄移點”并說明理由;
Ⅱ若函數(shù)有“飄移點”,求a的取值范圍.
【答案】(Ⅰ)函數(shù)有“飄移點”,函數(shù)沒有“飄移點”。證明過程詳見解析(Ⅱ)
【解析】
Ⅰ按照“飄移點”的概念,只需方程有根即可,據(jù)此判斷;
Ⅱ由題得,化簡得,可得,可求>,解得a范圍.
Ⅰ函數(shù)有“飄移點”,函數(shù)沒有“飄移點”,
證明如下:
設在定義域內(nèi)有“飄移點”,
所以:,即:,解得:,
所以函數(shù)在定義域內(nèi)有“飄移點”是0;
設函數(shù)有“飄移點”,則,
即由此方程無實根,與題設矛盾,所以函數(shù)沒有飄移點
Ⅱ函數(shù)的定義域是,
因為函數(shù)有“飄移點”,
所以:,即:,
化簡可得:,可得:,
因為,
所以:,所以:,
因為當時,方程無解,所以,
所以,
因為函數(shù)的定義域是,
所以:,即:,
因為,所以,即:,
所以當時,函數(shù)有“飄移點”
科目:高中數(shù)學 來源: 題型:
【題目】已知頂點為原點O的拋物線C1的焦點F與橢圓C2: =1(a>b>0)的右焦點重合,C1與C2在第一和第四象限的交點分別為A、B.
(1)若△AOB是邊長為2 的正三角形,求拋物線C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點P為橢圓C2上的任一點,若直線AP、BP分別與x軸交于點M(m,0)和N(n,0),證明:mn=a2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}中,a2=4,a4+a7=15. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2 +n,求b1+b2+b3+…+b10的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+x2(a∈R)在x=﹣ 處取得極值.
(1)確定a的值;
(2)討論函數(shù)g(x)=f(x)ex的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“傻子瓜子”是著名瓜子品牌,蕪湖特產(chǎn)之一.屯溪一中組織高二年級赴蕪湖方特進 行研學活動,開拓視野,甲、乙兩名同學在活動結束之余準備赴商場購買一定量的傻子瓜子.為了讓本次研學活動具有實際意義,兩名同學經(jīng)過了解得知系列的瓜子不僅便宜而且口味還不錯,并且每日的銷售量(單位:千克)與銷售價格(元/千克)滿足關系式:,其中,為常數(shù).已知銷售價格為5元/千克時,每日可售出系列瓜子11千克.若系列瓜子的成本為3元/千克,試確定銷售價格的值,使該商場每日銷售系列瓜子所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調(diào)銷售單價以提高銷量增加收益.據(jù)估算,若今年的實際銷售單價為元/件,則新增的年銷量(萬件).
(Ⅰ)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關系式;
(Ⅱ)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】面對擁堵難題,濟南治堵不舍晝夜.軌道交通1號線已于2019年元旦通車試運行,比原定工期提前8個月,其他各條地鐵線路的建設也正在如火如荼的進行中,完工投入運行后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔為(單位:分鐘),并且.經(jīng)市場調(diào)研測算,地鐵載客量與發(fā)車時間間隔相關,當時,地鐵為滿載狀態(tài),載客量為450人;當時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為258人,記地鐵載客量為(單位:人).
(1)求的表達式,并求當發(fā)車時間間隔為5分鐘時,地鐵的載客量;
(2)若該線路每分鐘的利潤為(單位:元),問當發(fā)車時間間隔為多少時,該線路每分鐘的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是奇函數(shù),則①一定是偶函數(shù);②一定是偶函數(shù);③;④.其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
若函數(shù),求在上的最小值;
Ⅱ記函數(shù),若函數(shù)在上有兩個零點,,求實數(shù)a的取值范圍,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com