【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個結(jié)果:① ;②26-7;③ ,其中正確的結(jié)論是( )
A.僅有①
B.僅有②
C.②與③
D.僅有③
【答案】C
【解析】根據(jù)題意,依次分析3位同學(xué)給出的個結(jié)果:
對于①C62,由組合意義,可得求的是6間不相同的電腦室只開放2間的方案數(shù),顯然錯誤;
對于②26-7,6間電腦室開方與否,其情況數(shù)目共有26種,其中都不開放和只開放1間的方案有C60+C61=7種,則26-7的含義為用全部的方案個數(shù)減都不開放和只開放1間的方案數(shù)目,故正確
對于③C63+2C64+C65+C66,因為C62=C64,則可以變形為C62+C63+C64+C65+C66,其含義是電腦室開放2間、3間,4間、5間、6間的方案數(shù)目之和;故正確.即②和③正確.故答案為:C.
根據(jù)題意結(jié)合已知條件利用組合的定義分情況討論計算出結(jié)果即可。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的△的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無零點,求a最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點P的極角為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人數(shù)學(xué)成績的莖葉圖如圖所示:
(1)求出這兩名同學(xué)的數(shù)學(xué)成績的平均數(shù)、標(biāo)準(zhǔn)差.
(2)比較兩名同學(xué)的成績,談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點,且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 :方程 有兩個不等的正根; :方程 表示焦點在 軸上的雙曲線.
(1)若 為真命題,求實數(shù) 的取值范圍;
(2)若“ 或 ”為真,“ 且 ”為假,求實數(shù) 的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店對新引進的商品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
定價(元) | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量(件) | 100 | 94 | 93 | 90 | 85 | 78 |
(1)求回歸直線方程;
(2)假設(shè)今后銷售依然服從(Ⅰ)中的關(guān)系,且該商品金價為每件5元,為獲得最大利潤,商店應(yīng)該如何定價?(利潤=銷售收入-成本)
參考公式:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com