【題目】某商店對新引進的商品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

定價(元)

9

9.2

9.4

9.6

9.8

10

銷量件)

100

94

93

90

85

78

(1)求回歸直線方程;

(2)假設(shè)今后銷售依然服從(Ⅰ)中的關(guān)系,且該商品金價為每件5元,為獲得最大利潤,商店應(yīng)該如何定價?(利潤=銷售收入-成本)

參考公式:.

【答案】(1);(2)9.5

【解析】分析:(1)根據(jù)表格中數(shù)據(jù)及平均數(shù)公式可求出的值從而可得樣本中心點的坐標(biāo),從而求可得公式中所需數(shù)據(jù),求出,再結(jié)合樣本中心點的性質(zhì)可得,進而可得關(guān)于的回歸方程;(2)設(shè)商店的獲利為元,則,當(dāng)且僅當(dāng)時,取得最大值,即商店應(yīng)定為.

詳解(1),

,

,

.

(2)設(shè)商店的獲利為元,則

,

當(dāng)且僅當(dāng)時,取得最大值405,即商店應(yīng)定為9.5元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個結(jié)果:① ;②26-7;③ ,其中正確的結(jié)論是( )
A.僅有①
B.僅有②
C.②與③
D.僅有③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐 中, 平面 , , , 分別在線段 上, , , 的中點.

(1)證明: 平面 ;
(2)若二面角 的大小為 ,求 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 若函數(shù) 上有3個零點,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足 ,且 .
(1)寫出 的前3項,并猜想其通項公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( , ),則sinx0的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正四面體的“骰子”(四個面分別標(biāo)有1,2,3,4四個數(shù)字),擲一次“骰子”三個側(cè)面的數(shù)字的和為“點數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長為2, . 是邊上一點,線段于點.

(1)若的面積為,求的長;

(2)若,求.

查看答案和解析>>

同步練習(xí)冊答案