N=
0-1
10
,則N2=
-10
0-1
-10
0-1
分析:根據(jù)根據(jù)矩陣乘法法進(jìn)行二階矩陣乘法運(yùn)算即可.
解答:解:∵N=
0-1
10
,
則N2=
0-1
10
0-1
10

=
0×0-1×10×(-1)-1×0
1×0+0×11×(-1)+0×0

=
-10
0-1

故答案為:
-10
0-1
點(diǎn)評(píng):本題主要考查了二階矩陣的求解,同時(shí)考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①命題“任意x∈R,x2≥0”的否定是“存在x∈R,x2≤0”;
②若等差數(shù)列{an}前n項(xiàng)和為Sn,則三點(diǎn)(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)共線;
③若函數(shù)f(x)=x2+(a+2)x+b,x∈[a,b]的圖象關(guān)于直線x=1對(duì)稱,則f(x)的最大值為30;
④在△ABC中,若cos(2B+C)+2sinAsinB=0,則△ABC一定是等腰三角形;
⑤函數(shù)||x-1|-|x+1||≤a恒成立,則實(shí)數(shù)a的取值范圍是[2,+∞).
其中假命題的序號(hào)是
①④
①④
.(填上所有假命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校高二年級(jí)期中考試數(shù)學(xué)成績(jī)?chǔ)畏䦶腘(110,102)正態(tài)分布,若規(guī)定90分以下為不及格,則這次考試的不及格率大約是
2.3%
2.3%
.(臨界值:0.683;0.954;0.997)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:(本小題共3小題,請(qǐng)從這3題中選做2小題,如果3題都做,則按所做的前兩題記分,每小題7分.)
(1)(矩陣與變換)在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A(0,0)、B(1,1)、C(0,2),矩陣M=
01
10
,N=
0-1
10
,求△ABC在矩陣MN作用下變換所得的圖形的面積;
(2)(坐標(biāo)系與參數(shù)方程)極坐標(biāo)系下,求直線ρcos(θ+
π
3
)=1
與圓ρ=
2
的公共點(diǎn)個(gè)數(shù);
(3)(不等式)已知x+2y=1,求x2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
已知矩陣M=
01
10
,N=
0-1
10

(Ⅰ)求矩陣NN;
(Ⅱ)若點(diǎn)P(0,1)在矩陣M對(duì)應(yīng)的線性變換下得到點(diǎn)P′,求P′的坐標(biāo).
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=t
y=2t+1
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的極坐標(biāo)方程是ρ=2cosθ(Ⅰ)在直角坐標(biāo)系xOy中,求圓C的直角坐標(biāo)方程
(Ⅱ)求圓心C到直線l的距離.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函數(shù)y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案