4.已知集合S={1,2},設S的真子集有m個,則m=( 。
A.4B.3C.2D.1

分析 若集合A有n個元素,則集合A有2n-1個真子集.

解答 解:∵集合S={1,2},
∴S的真子集的個數(shù)為:22-1=3.
故選:B.

點評 本題考查了求集合的真子集的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知三棱錐P-ABC的四個頂點均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=2$\sqrt{3}$,則該球的表面積為( 。
A.B.16πC.32πD.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設集合A={x|-x2-x+2<0},B={x|2x-5>0},則集合A與B的關系是( 。
A.B⊆AB.B?AC.B∈AD.A∈B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.“a+b=1”是“直線x+y+1=0與圓(x-a)2+(y-b)2=2相切”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設a、b都是不等于1的正數(shù),則“a>b>1”是“l(fā)oga3<logb3”的(  )條件.
A.充要B.充分非必要
C.必要非充分D.既非充分也非必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.公元263年左右,我國古代數(shù)學家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,他從圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候π的近似值是3.141024,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想及其重要,對后世產(chǎn)生了巨大影響,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,若運行改程序(參考數(shù)據(jù):$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),則輸出n的值為(  )
A.48B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設數(shù)列{an}的前n項和為Sn,a1=1,當n≥2時,an=2anSn-2Sn2
(1)求數(shù)列{an}的通項公式;
(2)是否存在正數(shù)k,使(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$對一切正整數(shù)n都成立?若存在,求k的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知P,Q為動直線y=m(0<m<$\frac{{\sqrt{2}}}{2}$)與y=sinx和y=cosx在區(qū)間$[0,\frac{π}{2}]$上的左,右兩個交點,P,Q在x軸上的投影分別為S,R.當矩形PQRS面積取得最大值時,點P的橫坐標為x0,則( 。
A.${x_0}<\frac{π}{8}$B.${x_0}=\frac{π}{8}$C.$\frac{π}{8}<{x_0}<\frac{π}{6}$D.${x_0}>\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設復數(shù)z滿足關系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i.

查看答案和解析>>

同步練習冊答案