4.函數(shù)y=lgx+$\sqrt{2-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≤2}B.{x|x>0}C.{x|x<0或x≥2}D.{x|0<x≤2}

分析 由對(duì)數(shù)式的真數(shù)大于0,根式內(nèi)部的代數(shù)式大于等于0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{x>0}\\{2-x≥0}\end{array}\right.$,得0<x≤2.
∴函數(shù)y=lgx+$\sqrt{2-x}$的定義域?yàn)閧x|0<x≤2}.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一組數(shù)據(jù)共有7個(gè)數(shù),其中10,2,5,2,4,2,還有一個(gè)數(shù)m不確定,但知道數(shù)m取自集合M={m|-20≤m≤20,m∈Z},則這組數(shù)的平均數(shù)、中位數(shù)、眾數(shù)依次能構(gòu)成等差數(shù)列的概率為$\frac{3}{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an}滿足an+2+an=2an+1(n∈N*),且a5=$\frac{π}{2}$,若函數(shù)f(x)=sin2x+2cos2$\frac{x}{2}$,記yn=f(an),則數(shù)列{yn}的前9項(xiàng)和為(  )
A.0B.-9C.9D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在平面直角坐標(biāo)系中,若P(x,y)滿足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$,則當(dāng)xy取得最大值時(shí),點(diǎn)P的坐標(biāo)是($\frac{5}{2}$,5),xy取得的最大值為$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)求函數(shù)f(x)=4${\;}^{x-\frac{1}{2}}}$-3•2x+5在區(qū)間[-2,2]上的最大值,并求函數(shù)f(x)取得最大值時(shí)的x的取值?
(2)若函數(shù)y=a2x+2ax-1(a>0,a≠1)在區(qū)間[-2,2]上的最大值為14,求實(shí)數(shù)a的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.冪函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(-2,-$\frac{1}{8}$),則滿足f(x)=27的x值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,點(diǎn)M到F(1,0)的距離比它到y(tǒng)軸的距離大1.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)若在y軸右側(cè),曲線C上存在兩點(diǎn)關(guān)于直線x-2y-m=0對(duì)稱,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2-2|x|-3.
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在所給的坐標(biāo)系中畫(huà)出該函數(shù)的簡(jiǎn)圖;
(3)寫(xiě)出該函數(shù)的單調(diào)區(qū)間(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知兩定點(diǎn)M(-1,0),N(1,0),直線l:y=-2x+3,在l上滿足|PM|+|PN|=4的點(diǎn)P有2個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案