10.已知復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對應(yīng)的點關(guān)于直線y=x對稱,z1=1+2i,則$\frac{z_1}{z_2}$=( 。
A.$\frac{3}{5}-\frac{4}{5}i$B.$\frac{3}{5}+\frac{4}{5}i$C.$\frac{4}{5}-\frac{3}{5}i$D.$\frac{4}{5}+\frac{3}{5}i$

分析 復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對應(yīng)的點關(guān)于直線y=x對稱,z1=1+2i,可得z2=2+i.再利用復(fù)數(shù)的運算法則即可得出.

解答 解:復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對應(yīng)的點關(guān)于直線y=x對稱,z1=1+2i,∴z2=2+i.
則$\frac{z_1}{z_2}$=$\frac{1+2i}{2+i}$=$\frac{(1+2i)(2-i)}{(2+i)(2-i)}$=$\frac{4}{5}$+$\frac{3}{5}$i.
故選:D.

點評 本題考查了點關(guān)于直線y=x的對稱性、復(fù)數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“干支紀(jì)年法”是中國歷法上自古以來就一直使用的紀(jì)年方法.干支是天干和地支的總稱.甲、乙、丙、丁、戊、已、庚、辛、壬、癸十個符號叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二個符號叫地支.把干支順序相配正好六十為一周,周而復(fù)始,循環(huán)記錄,這就是俗稱的“干支表”.2016年是干支紀(jì)年法中的丙申年,那么2017年是干支紀(jì)年法中的( 。
A.丁酉年B.戊未年C.乙未年D.丁未年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若復(fù)數(shù)z=$\frac{1+i}{1-i}$,$\overline{z}$為z的共軛復(fù)數(shù),則($\overline{z}$)2017=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線y=eaxcosx在x=0處的切線與直線x+2y=0垂直,則a=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)命題p:“?a≥-1,ln(en+1)>$\frac{1}{2}$”,則?p為( 。
A.?a≥-1,ln(en+1)≤$\frac{1}{2}$B.?a<-1,ln(en+1)≤$\frac{1}{2}$C.?a≥-1,ln(en+1)≤$\frac{1}{2}$D.?a<-1,ln(en+1)≤$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.復(fù)數(shù)$z={({\frac{1-i}{1+i}})^4}+2i$的共軛復(fù)數(shù)$\overline z$=-1-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知t∈R,復(fù)數(shù)z1=3+4i,z2=t+i,且z1•$\overline{{z}_{2}}$是實數(shù),則復(fù)數(shù)z2的模|z2|=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某單位決定建造一批簡易房(房型為長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復(fù)合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房材料費控制在32000元以內(nèi).
(1)設(shè)房前面墻的長為x,兩側(cè)墻的長為y,所用材料費為p,試用x,y表示p;
(2)在材料費的控制下簡易房面積S的最大值是多少?并指出前面墻的長度x應(yīng)為多少米時S最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x),x∈R滿足如下性質(zhì):①f(x)+f(-x)=0;②f($\frac{3}{4}$+x)=f($\frac{3}{4}$-x),若f(1)=-$\frac{\sqrt{5}}{5}$,f(2)=sinα(α∈(0,$\frac{π}{2}$)),則sin($\frac{π}{4}$+α)=( 。
A.0B.$\frac{\sqrt{10}}{10}$C.$\frac{2\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

同步練習(xí)冊答案