分析 (1)求出離心率e,故可等軸設(shè)雙曲線的方程為x2-y2=λ(λ≠2),過點(diǎn)(4,-$\sqrt{10}$),可得16-10=λ,即可求雙曲線方程;
(2)求出向量坐標(biāo),利用向量的數(shù)量積公式,即可證明結(jié)論.
(3)利用M與F2可得直線方程,求出N的縱坐標(biāo),然后求解三角形的面積.
解答 解:(1)∵焦距是實(shí)軸長的$\sqrt{2}$倍,
∴e=$\sqrt{2}$,故可等軸設(shè)雙曲線的方程為x2-y2=λ(λ≠2),
∵過點(diǎn)(4,-$\sqrt{10}$),∴16-10=λ,
∴λ=6.
∴雙曲線方程為x2-y2=6.
(2)證明:由(1)可知:在雙曲線中,a=b=$\sqrt{6}$,∴c=2$\sqrt{3}$.
∴F1(-2$\sqrt{3}$,0),F(xiàn)2(2$\sqrt{3}$,0).
∴$\overrightarrow{M{F}_{1}}$=(-2$\sqrt{3}$-3,-m),
$\overrightarrow{M{F}_{2}}$=(2$\sqrt{3}$-3,-m).
∴$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=+m2=-3+m2.
∵M(jìn)點(diǎn)在雙曲線上,∴9-m2=6,∴m2=3.
∴$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0.
∴點(diǎn)M在以F1F2為直徑的圓上;
(3)由(2)不妨M(3,$\sqrt{3}$),F(xiàn)2(2$\sqrt{3}$,0),直線M F2的方程為:y=(-2-$\sqrt{3}$)(x-2$\sqrt{3}$),代入雙曲線方程可得:
消去x可得:(6-4$\sqrt{3}$)y2-4$\sqrt{3}$(2-$\sqrt{3}$)y+6=0,因?yàn)镸的縱坐標(biāo)為$\sqrt{3}$,所以N的縱坐標(biāo)為:y2•$\sqrt{3}{y}_{2}=\frac{6}{6-4\sqrt{3}}$,
解得y2=-(2+$\sqrt{3}$),
△F1MN的面積為:$\frac{1}{2}×4\sqrt{3}×(\sqrt{3}+2+\sqrt{3})$=12+4$\sqrt{3}$.
點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查向量的數(shù)量積公式,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}-1}$ | B. | y=ex-e-x | C. | y=ln|x| | D. | y=x${\;}^{\frac{2}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
生二胎 | 不生二胎 | 合計(jì) | |
70后 | 30 | 15 | 45 |
80后 | 45 | 10 | 55 |
合計(jì) | 75 | 25 | 100 |
P(k2≥k | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{3}}}{π}-1$ | B. | $\frac{{3\sqrt{3}}}{π}-\frac{1}{3}$ | C. | $\frac{{3\sqrt{3}}}{π}$ | D. | $\frac{{3\sqrt{3}}}{π}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30228 | B. | 30232 | C. | 30236 | D. | 30240 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2 | D. | 2或-2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com