【題目】如圖,四棱錐的底面為菱形,,底面,,E為的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積;
(3)在側(cè)棱上是否存在一點(diǎn)M,滿足平面,若存在,求的長(zhǎng);若不存在,說(shuō)明理由.
【答案】(1)證明見解析;(2);(3)存在,.
【解析】
(1)利用菱形的性質(zhì),可得F為的中點(diǎn),再利用三角形的中位線定理可得,利用線面平行的判定定理即可得出;
(2)由已知底面,可得為三棱錐的高,利用,以及三棱錐的體積計(jì)算公式即可得出;
(3)利用三垂線定理可得,在平面內(nèi),作,垂足為,求得的長(zhǎng),即可知道點(diǎn)是否在線段上.
(1)設(shè),相交于點(diǎn)F,連接,
∵四棱錐底面為菱形,
∴F為的中點(diǎn),
又∵E為的中點(diǎn),∴.
又∵平面,平面,
∴平面.
(2)∵底面為菱形,,
∴是邊長(zhǎng)為2的正三角形,
又∵底面,
∴為三棱錐的高,
∴.
(3)在側(cè)棱上存在一點(diǎn)M,滿足平面,證明如下:
∵四棱錐的底面為菱形,
∴,
∵平面,平面,
∴.
∵,∴平面,
∴.
在內(nèi),可求,,
在平面內(nèi),作,垂足為M,
設(shè),則有,
解得.
連接,∵,,,平面,平面.
∴平面.
∴滿足條件的點(diǎn)M存在,此時(shí)的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)高一年級(jí)共8個(gè)班,現(xiàn)從高一年級(jí)選10名同學(xué)組成社區(qū)服務(wù)小組,其中高一(1)班選取3名同學(xué),其它各班各選取1名同學(xué).現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到社區(qū)老年中心參加“尊老愛(ài)老”活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)來(lái)自不同班級(jí)的概率;
(2)設(shè)X為選出同學(xué)中高一(1)班同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù),討論函數(shù)在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】原命題:“, 為兩個(gè)實(shí)數(shù),若,則, 中至少有一個(gè)不小于1”,下列說(shuō)法錯(cuò)誤的是( )
A. 逆命題為:若, 中至少有一個(gè)不小于1,則,為假命題
B. 否命題為:若,則, 都小于1,為假命題
C. 逆否命題為:若, 都小于1,則,為真命題
D. “”是“, 中至少有一個(gè)不小于1”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了研究期中考試前學(xué)生所做數(shù)學(xué)模擬試題的套數(shù)與考試成績(jī)的關(guān)系,統(tǒng)計(jì)了五個(gè)班做的模擬試卷套數(shù)量及期中考試的平均分如下:
套(x) | 7 | 6 | 6 | 5 | 6 |
數(shù)學(xué)平均分(y) | 125 | 120 | 110 | 100 | 115 |
(Ⅰ) 若x與y成線性相關(guān),則某班做了8套模擬試題,預(yù)計(jì)平均分為多少?
(2)期中考試對(duì)學(xué)生進(jìn)行獎(jiǎng)勵(lì),考入年級(jí)前200名,獲一等獎(jiǎng)學(xué)金500元;考入年級(jí)201—500 名,獲二等獎(jiǎng)學(xué)金300元;考入年級(jí)501名以后的學(xué)生生將不能獲得獎(jiǎng)學(xué)金。甲、乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,.若甲、乙兩名學(xué)生獲得每個(gè)等級(jí)的獎(jiǎng)學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金總金額X 的分布列及數(shù)學(xué)期望。
附: , 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且 ,在數(shù)列中,,點(diǎn)在直線上.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,已知點(diǎn)A(-2,0),直角頂點(diǎn)B(0,-2),點(diǎn)C在x軸上。
(1)求Rt△ABC外接圓的方程;
(2)求過(guò)點(diǎn)(-4,0)且與Rt△ABC外接圓相切的直線的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com