【題目】設(shè)全集.

1)解關(guān)于的不等式;

2)記為(1)中不等式的解集,為不等式組的整數(shù)解集,若恰有三個元素,求的取值范圍.

【答案】1)見解析(2

【解析】

1)通過討論a的取值范圍,求出不等式的解集即可.

2)解不等式組求得集合B,通過討論a的范圍求出A的補(bǔ)集,再根據(jù)恰有三個元素,建立不等式求解.

1)因?yàn)?/span>

所以,

當(dāng) 時(shí),解集為R,

當(dāng) 時(shí),解集為 ,

當(dāng) 時(shí),,

所以,

所以解集為 .

綜上: 時(shí),解集為R;

時(shí),解集為 ;

時(shí),解集為 .

2)因?yàn)?/span>,

所以,

所以

解得 .

因?yàn)?/span>為不等式組的整數(shù)解集,

所以

當(dāng) 時(shí), 不滿足恰有三個元素.

當(dāng) 時(shí),不滿足恰有三個元素.

當(dāng) 時(shí), , ,

因?yàn)?/span>恰有三個元素,

所以 ,

解得 .

綜上:的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校科技節(jié)需要同學(xué)設(shè)計(jì)一幅矩形紙板宣傳畫,要求畫面的面積為(如圖中的陰影部分),畫面的上、下各留空白,左、右各留空白.

1)如何設(shè)計(jì)畫面的高與寬的尺寸,才能使整個宣傳畫所用紙張面積最?

2)如果按照第一問這樣制作整個宣傳畫,在科技節(jié)結(jié)束以后,這整個宣傳畫紙板可再次作為某實(shí)驗(yàn)道具,并要求從整個宣傳畫板的四個角各截取一個相同的小正方形,做成一個長方體形的無蓋容器.問截下的小正方形的邊長(也就是該容器的高)是多少時(shí),該容器的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最大值;

(2)設(shè),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M=,對它的非空子集A,可將A中每個元素K都乘以再求和(如A=,可求得和為),則對M的所有非空子集,這些和的總和是__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),的交點(diǎn),求的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春季以來,在非洲豬瘟、環(huán)保禁養(yǎng)、上行周期等因素形成的共振條件下,豬肉價(jià)格連續(xù)暴漲.某養(yǎng)豬企業(yè)為了抓住契機(jī),決定擴(kuò)大再生產(chǎn),根據(jù)以往的養(yǎng)豬經(jīng)驗(yàn)預(yù)估:在近期的一個養(yǎng)豬周期內(nèi),每養(yǎng)百頭豬,所需固定成本為20萬元,其它為變動成本:每養(yǎng)1百頭豬,需要成本14萬元,根據(jù)市場預(yù)測,銷售收入(萬元)與(百頭)滿足如下的函數(shù)關(guān)系:(注:一個養(yǎng)豬周期內(nèi)的總利潤(萬元)=銷售收入-固定成本-變動成本).

1)試把總利潤(萬元)表示成變量(百頭)的函數(shù);

2)當(dāng)(百頭)為何值時(shí),該企業(yè)所獲得的利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線相交于兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn) ,的面積之比__________

【答案】

【解析】

由題意可得拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為。

如圖,設(shè),A,B分別向拋物線的準(zhǔn)線作垂線,垂足分別為E,N,

,解得。

代入拋物線,解得。

∴直線AB經(jīng)過點(diǎn)與點(diǎn),

故直線AB的方程為代入拋物線方程解得。

。

, ,

答案:

點(diǎn)睛:

在解決與拋物線有關(guān)的問題時(shí),要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當(dāng)已知曲線是拋物線時(shí),拋物線上的點(diǎn)M滿足定義,它到準(zhǔn)線的距離為d|MF|d,可解決有關(guān)距離、最值、弦長等問題;二是利用動點(diǎn)滿足的幾何條件符合拋物線的定義,從而得到動點(diǎn)的軌跡是拋物線.

型】填空
結(jié)束】
17

【題目】已知三個內(nèi)角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,為棱的中點(diǎn).,,.

1)求證:平面;

2)在棱上是否存在點(diǎn),使得平面平面?如果存在,求此時(shí)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,各棱長均為4, 、分別是的中點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案