精英家教網 > 高中數學 > 題目詳情
橢圓
x2
6
+
y2
2
=1和雙曲線
x2
3
-y2=1的公共焦點為F1、F2,P是兩曲線的一個交點,那么cos∠F1PF2的值是______.
由題意知F1(-2,0),F2(2,0),
解方程組
x2
6
+
y2
2
=1
x2
3
-y2=1
x2=
9
2
y2=
1
2
,
取P點坐標為(
3
2
2
,
2
2
),
PF1
=(-2-
3
2
2
,-
2
2
)
,
PF2
=(2-
3
2
2
,-
2
2
)

cos∠F1PF2=
(-2-
3
2
2
)• (2-
3
2
2
)+
1
2
(-2-
3
2
2
)
2
+
1
2
(2-
3
2
2
)
2
+
1
2
=
1
3

故答案為:
1
3
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設橢圓
x2
6
+
y2
2
=1
和雙曲線
x2
3
-y2=1
的公共焦點分別為F1,F2,P是兩曲線的一個交點,則cos∠F1PF2的值為(  )
A、
1
4
B、
1
3
C、
2
3
D、-
1
3

查看答案和解析>>

科目:高中數學 來源: 題型:

y2=2px(p>0)的焦點與橢圓
x2
6
+
y2
2
=1的右焦點重合,則拋物線準線方程為
( 。
A、x=-1
B、x=-2
C、x=-
1
2
D、x=-4

查看答案和解析>>

科目:高中數學 來源: 題型:

設橢圓
x2
6
+
y2
2
=1和雙曲線
x2
2
-
y2
2
=1的公共焦點為F1,F2,P是兩曲線的一個交點,則∠F1PF2=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•煙臺一模)(文)若拋物線y2=2px的焦點與橢圓
x2
6
+
y2
2
=1
的右焦點重合,則實數p的值是
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

若拋物線y2=
1
2p
x
的焦點與橢圓
x2
6
+
y2
2
=1
的右焦點重合,則p的值為(  )

查看答案和解析>>

同步練習冊答案