經(jīng)過A(2,-
2
2
),B(-
2
,-
3
2
)的橢圓的標(biāo)準(zhǔn)方程為
 
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)橢圓的方程為mx2+ny2=1,(m>0,n>0,m≠n),由已知得
4m+
1
2
n=1
2m+
3
4
n=1
,由此能求出橢圓的標(biāo)準(zhǔn)方程.
解答: 解:設(shè)橢圓的方程為mx2+ny2=1,(m>0,n>0,m≠n),
4m+
1
2
n=1
2m+
3
4
n=1
,
解得m=
1
8
,n=1,
∴經(jīng)過A(2,-
2
2
),B(-
2
,-
3
2
)的橢圓的標(biāo)準(zhǔn)方程為
x2
8
+y2=1

故答案為:
x2
8
+y2=1
點(diǎn)評(píng):本題考查橢圓方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
、
e2
是夾角為60°的兩個(gè)單位向量,
a
=3
e1
-2
e2
,
b
=2
e1
-3
e2

(1)在坐標(biāo)紙中利用直尺圓規(guī)畫出
a
,
b
;
(2)求
a
+
b
a
-
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用一根細(xì)鐵絲圍一個(gè)面積為4的矩形,
(1)試將所有鐵絲的長(zhǎng)度y表示為矩形的某條邊長(zhǎng)x的函數(shù);
(2)①求證:函數(shù)f(x)=x+
4
x
在(0,2]上是減函數(shù),在[2,+∞)上是增函數(shù);
②題(1)中矩形的邊長(zhǎng)x多大時(shí),細(xì)鐵絲的長(zhǎng)度最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)
y≥1
y≤2x-1
x+y≤5
x,y滿足約束條件,則目標(biāo)函數(shù)z=x-y的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有意義.對(duì)于給定的正數(shù)K,已知函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K
,取函數(shù)f(x)=3-x-e-x.若對(duì)任意的x∈(-∞,+∞),恒有fK=f(x),則K的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知回歸直線方程
y
=
a
+
b
x,如果x=3時(shí),y的估計(jì)值是17,x=8時(shí),y的估計(jì)值是22,那么回歸直線方程是( 。
A、
y
=x+14
B、
y
=-x+14
C、
y
=x-14
D、
y
=2x+14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-3x-4的定義域?yàn)閇0,m],值域?yàn)閇-
25
4
,-4],則m的取值范圍是(  )
A、(0,4]
B、[
3
2
,4]
C、[
3
2
,3]
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量X~N(1,4)且P(X<2)=0.72,則P(1<X<2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用簡(jiǎn)單隨機(jī)抽樣的方法從含n個(gè)個(gè)體的總體中,逐個(gè)抽取一個(gè)容量為3的樣本,對(duì)其中個(gè)體a在第一次就被抽到的概率為
1
8
,那么n=
 
;在整個(gè)抽樣個(gè)體被抽到的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案