【題目】已知f(xy)=f(x)+f(y).

(1) xyR,求f(1),f(-1)的值; (2)x,yR,判斷yf(x)的奇偶性;

(3)若函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(x)+f(x-2)≤3,x的取值范圍。

【答案】(1)f(1)=0.f(-1)=0(2)偶函數(shù)(3) (2,4]

【解析】

(1)利用賦值法可得f(1),f(-1)的值;(2)y=-1 ,則可得f(-x)=f(x),即得結(jié)果,(3)先根據(jù)定義得f[x(x-2)]≤f(8),再根據(jù)單調(diào)性化簡不等式,解得結(jié)果.

:(1)xy=1,f(1)=f(1)+f(1),所以f(1)=0.

又令xy=-1,f(1)=f(-1)+f(-1), 所以f(-1)=0.

(2)y=-1,f(-x)=f(x)+f(-1),(1)f(-1)=0,

所以f(-x)=f(x),即函數(shù)f(x)為偶函數(shù).

(3)因?yàn)?/span>f(4)=f(2)+f(2)=1+1=2,所以f(8)=f(2)+f(4)=1+2=3,

因?yàn)?/span>f(x)+f(x-2)≤3, 所以f[x(x-2)]≤f(8),

因?yàn)?/span>f(x)(0,+∞)上是增函數(shù),所以

所以x的取值范圍是(2,4].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足 ,且 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,已知a=6,sinA= ,B=A+
(1)求b的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知aR,函數(shù)f(x)=log

(1)當(dāng)a=1時(shí),解不等式f(x)1;

(2)若關(guān)于x的方程g(x)=f(x)﹣log3(ax+1)有且只有一個零點(diǎn),求a的取值范圍;

(3)設(shè)0a1,若對任意t,函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)是定義在(﹣∞,+∞)上的偶函數(shù),x1 , x2∈[0,+∞)(x1≠x2),有 ,則(
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個年齡段:21~30,31~40(單位:歲),統(tǒng)計(jì)這兩個年齡段選手答對歌曲名稱與否的人數(shù)如圖所示.
(參考公式:K2= ,其中n=a+b+c+d)

(1)寫出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為答對歌曲名稱與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)

P(K2≥k0

0.1

0.05

0.01

0.005

k0

2.706

3.841

6.635

7.879


(2)在統(tǒng)計(jì)過的參考選手中按年齡段分層選取9名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在21~30歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C,F(xiàn)為⊙O上的兩點(diǎn),OC⊥AB,過點(diǎn)F作⊙O的切線FD交AB的延長線于點(diǎn)D,連接CF交AB于點(diǎn)E.求證:DE2=DADB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,四邊形是正方形,

(1)證明:平面平面

(2)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

當(dāng)時(shí),求函數(shù)的值域;

當(dāng)在區(qū)間上為增函數(shù)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案