【題目】若f(x)是定義在(﹣∞,+∞)上的偶函數(shù),x1 , x2∈[0,+∞)(x1≠x2),有 ,則( )
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a﹣(a∈R)
(1)如果函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)證明:對任意的實(shí)數(shù)a,函數(shù)f(x)在(﹣∞,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+1+b(a>0)
(1)若f(x)在區(qū)間[2,3]上的最大值為4、最小值為1,求a,b的值;
(2)若a=1,b=1,關(guān)于x的方程f(|2x﹣1|)+k(4﹣3|2x﹣1|)=0,有3個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,半圓O以BC為直徑,平面ABCD垂直于半圓O所在的平面,P為半圓周上任意一點(diǎn)(與B、C不重合).
(1)求證:平面PAC⊥平面PAB;
(2)若P為半圓周中點(diǎn),求此時(shí)二面角P﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(xy)=f(x)+f(y).
(1) 若x,y∈R,求f(1),f(-1)的值; (2)若x,y∈R,判斷y=f(x)的奇偶性;
(3)若函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(x)+f(x-2)≤3,求x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,已知AB=15,BC=14,CA=13.將△ABC沿BC邊上的高AD折成一個(gè)如圖②所示的四面體A﹣BCD,使得圖②中的BC=11.
(1)求二面角B﹣AD﹣C的平面角的余弦值;
(2)在四面體A﹣BCD的棱AD上是否存在點(diǎn)P,使得 =0?若存在,請指出點(diǎn)P的位置;若不存在,請給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)隨機(jī)變量x,y的取值表為
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
若x,y具有線性相關(guān)關(guān)系,且 = x+2.6,則下列四個(gè)結(jié)論錯(cuò)誤的是( )
A.x與y是正相關(guān)
B.當(dāng)x=6時(shí),y的估計(jì)值為8.3
C.x每增加一個(gè)單位,y增加0.95個(gè)單位
D.樣本點(diǎn)(3,4.8)的殘差為0.56
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) ,
(1)若,且對,函數(shù)的值域?yàn)?/span>,求的表達(dá)式;
(2)在(1)的條件下,函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)設(shè),,且為偶函數(shù),證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com