18.在△ABC中,a=$\sqrt{3}$,b=2,c=1,那么角A的值是( 。
A.90°B.60°C.45°D.30°

分析 利用余弦定理表示出cosA,把三邊長(zhǎng)代入求出cosA的值,即可確定出A的度數(shù).

解答 解:∵在△ABC中,a=$\sqrt{3}$,b=2,c=1,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4+1-3}{4}$=$\frac{1}{2}$,
則A=60°,
故選:B.

點(diǎn)評(píng) 此題考查了余弦定理,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=\frac{x^2}{2}-klnx$,k∈R
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)k>0時(shí),若f(x)存在零點(diǎn),則f(x)在區(qū)間$({1,\sqrt{e}}]$上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則a6的值等于32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R),A=[-1,1],設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩根為x1,x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f(x)是定義在R上的偶函數(shù),并滿足f(x+2)=$\frac{1}{f(x)}$,當(dāng)2≤x≤3,f(x)=x,則f(25.5)等于( 。
A.-5.5B.-2.5C.2.5D.5.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知角α的終邊經(jīng)過(guò)P($\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα;
(2)根據(jù)上述條件,你能否確定sin($\frac{π}{4}$+α)的值?若能,求出sin($\frac{π}{4}$+α)的值,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表:
商店名稱ABCDE
銷售額( x)/千萬(wàn)元35679
利潤(rùn)額( y)/千萬(wàn)元23345
(1)求利潤(rùn)額y與銷售額x之間的線性回歸方程$\hat y=\hat bx+\hat a$;
(2)若該公司某月的總銷售額為40千萬(wàn)元,則它的利潤(rùn)額估計(jì)是多少?
參考公式:用最小二乘法求線性回歸方程系數(shù)公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“a<0”是“函數(shù)f(x)=|x(ax+1)|在區(qū)間(-∞,0)內(nèi)單調(diào)遞減”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(2x+1)定義域?yàn)椋?,5),則f(x)定義域?yàn)椋?,11).

查看答案和解析>>

同步練習(xí)冊(cè)答案