分析 (1)由條件利用任意角的三角函數(shù)的定義,求得sinα的值.
(2)由于可以求得sinα和cosα的值,再利用兩角和的正弦公式求得 sin($\frac{π}{4}$+α)的值.
解答 解:(1)∵角α的終邊經過P($\frac{3}{5}$,$\frac{4}{5}$),∴x=$\frac{3}{5}$,y=$\frac{4}{5}$,r=|OP|=1,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$.
(2)由題意可得,cosα=$\frac{x}{r}$=$\frac{3}{5}$,∴sin($\frac{π}{4}$+α)=sin$\frac{π}{4}$cosα+cos$\frac{π}{4}$sinα=$\frac{\sqrt{2}}{2}$(sinα+cosα)=$\frac{\sqrt{2}}{2}$×$\frac{7}{5}$=$\frac{7\sqrt{2}}{10}$,
∴能確定sin($\frac{π}{4}$+α)的值.
點評 本題主要考查任意角的三角函數(shù)的定義,兩角和的正弦公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\sqrt{3}$sinx | B. | y=-$\sqrt{3}$cosx | C. | y=$\sqrt{3}$sin4x | D. | y=-$\sqrt{3}$cos4x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com