3.對(duì)于區(qū)間[a,b]上的函數(shù)f(x),若存在x0∈[a,b],使得f(x0)=${∫}_{a}^$f(x)dx成立,則稱x0為函數(shù)f(x)在區(qū)間[a,b]上的一個(gè)“積分點(diǎn)”,則函數(shù)f(x)=cos(2x+$\frac{π}{6}$)在區(qū)間[0,$\frac{π}{2}$]上的“積分點(diǎn)”為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 由“積分點(diǎn)”的定義,結(jié)合定積分的運(yùn)算,得到f(x0)=cos(2x0+$\frac{π}{6}$)=-$\frac{1}{2}$,解得即可.

解答 解:${∫}_{0}^{\frac{π}{2}}$cos(2x+$\frac{π}{6}$)dx=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)|${\;}_{0}^{\frac{π}{2}}$=$\frac{1}{2}$[sin(π+$\frac{π}{6}$)-sin$\frac{π}{6}$]=-$\frac{1}{2}$,
由存在x0∈[a,b],使得f(x0)=${∫}_{a}^$f(x)dx成立,
則f(x0)=cos(2x0+$\frac{π}{6}$)=-$\frac{1}{2}$,
∴2x0+$\frac{π}{6}$=$\frac{2π}{3}$+2kπ,或2x0+$\frac{π}{6}$=$\frac{4π}{3}$+2kπ,k∈Z,
∴x0=$\frac{π}{4}$+kπ,或x0=$\frac{7π}{12}$+kπ,k∈Z,
∵x0∈[0,$\frac{π}{2}$],
∴x0=$\frac{π}{4}$,
故選:B.

點(diǎn)評(píng) 本題考查新定義的理解和運(yùn)用,主要考查定積分的運(yùn)算和三角函數(shù)求解,以及判斷能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1、F2,設(shè)動(dòng)圓過點(diǎn)F2且與直線x=-1相切,記動(dòng)圓的圓心的軌跡為E.
(1)求軌跡E的方程;
(2)在軌跡E上有兩點(diǎn)M、N,橢圓C上有兩點(diǎn)P、Q,滿足$\overrightarrow{M{F}_{2}}$•$\overrightarrow{P{F}_{2}}$=0,且$\overrightarrow{M{F}_{2}}$∥$\overrightarrow{N{F}_{2}}$,$\overrightarrow{P{F}_{2}}$∥$\overrightarrow{Q{F}_{2}}$,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng).某公司為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),決定從公司全體650人中隨機(jī)抽取50人進(jìn)行問卷調(diào)查.
喜歡戶外運(yùn)動(dòng)不喜歡戶外運(yùn)動(dòng)合計(jì)
男員工5
女員工10
合計(jì)50
(Ⅰ)通過對(duì)挑選的50人進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:
已知從這50人中進(jìn)行隨機(jī)挑選1人,此人喜歡戶外運(yùn)動(dòng)的概率是0.6.請(qǐng)將2×2列聯(lián)表補(bǔ)充完整,并估計(jì)該公司男、女員工各多少人;
(Ⅱ)估計(jì)有多大的把握認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān),并說明你的理由;
(Ⅲ)若用隨機(jī)數(shù)表法從650人中抽取員工.先將650人按000,001,…,649編號(hào).恰好000~199號(hào)都為男員工,450~649號(hào)都為女員工.現(xiàn)規(guī)定從隨機(jī)數(shù)表(見附表)第2行第7列的數(shù)開始往右讀,在最先挑出的5人中,任取2人,求至少取到1位男員工的概率.
附:
P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
隨機(jī)數(shù)表:
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“∵四邊形ABCD是菱形,∴四邊形ABCD的對(duì)角線互相垂直”,則這個(gè)推理的大前提是
菱形的對(duì)角線互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2sinx($\sqrt{3}$cosx+sinx)-2.
(1)若點(diǎn)P($\sqrt{3}$,-1)在角α的終邊上,求f(α)的值;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知條件p:$\frac{4}{x-1}$≤-1,條件q:x2+x<a2-a,且¬q的一個(gè)充分不必要條件是¬p,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+$\frac{1}{3}$an=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=[2log${\;}_{\frac{1}{4}}$($\frac{1}{3}$an)-7]cosnπ+an,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在二項(xiàng)式(4x2-2x+1)(2x+1)5的展開式中,含x4項(xiàng)的系數(shù)是80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)在拋物線y=$\frac{3}{2}$x2+$\frac{1}{2}$x上,各項(xiàng)都為正數(shù)的等比數(shù)列{bn}滿足b2=$\frac{1}{4}$,b4=$\frac{1}{16}$.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)記Cn=a${\;}_{{a}_{n}}$+b${\;}_{{a}_{n}}$,求數(shù)列{Cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案