由無理數(shù)引發(fā)的數(shù)學(xué)危機一直延續(xù)到19世紀(jì).直到1872年,德國數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù)(史稱戴德金分割),并把實數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無理數(shù)被認(rèn)為“無理”的時代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機.所謂戴德金分割,是指將有理數(shù)集Q劃分為兩個非空的子集M與N,且滿足M∪N=Q,M∩N=∅,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為戴德金分割試判斷,對于任一戴德金分割(M,N),下列選項中,不可能成 立的是( 。
A、M沒有最大元素,N有一個最小元素
B、M沒有最大元素,N也沒有最小元素
C、M有一個最大元素,N有一個最小元素
D、M有一個最大元素,N沒有最小元素
考點:集合的表示法
專題:計算題,集合
分析:由題意依次舉例對四個命題判斷,從而確定答案.
解答: 解:若M={x∈Q|x<0},N={x∈Q|x≥0};則M沒有最大元素,N有一個最小元素0;故A正確;
若M={x∈Q|x<
2
},N={x∈Q|x≥
2
};則M沒有最大元素,N也沒有最小元素;故B正確;
M有一個最大元素,N有一個最小元素不可能,故C不正確;
若M={x∈Q|x≤0},N={x∈Q|x>0};M有一個最大元素,N沒有最小元素,故D正確;
故選C.
點評:本題考查了學(xué)生對新定義的接受與應(yīng)用能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,
π
2
)上隨機取一個數(shù)x,則事件“tanxcosx≥
1
2
”發(fā)生的概率為( 。
A、
1
3
B、
1
2
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求方程[x3]+[x2]+[x]={x}-1的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的外接圓是半徑為1的圓O,且∠AOB=120°,則
AC
CB
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx2+lnx,若f(x)<0在函數(shù)定義域內(nèi)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一個長方形地塊ABCD,邊AB為2km,AD為4km.,地塊的一角是濕地(圖中陰影部分),其邊緣線AC是以直線AD為對稱軸,以A為頂點的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線AC上一點P的直線型隔離帶EF,E,F(xiàn)分別在邊AB,BC上(隔離帶不能穿越濕地,且占地面積忽略不計).設(shè)點P到邊AD的距離為t(單位:km),△BEF的面積為S(單位:km2).
(1)求S關(guān)于t的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)是否存在點P,使隔離出的△BEF面積S超過3km2?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點P(2,
π
3
)到極軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程x2-2x+m=0有兩個不相等的實數(shù)根;命題q:函數(shù)y=(m+2)x-1是R上的單調(diào)增函數(shù).若“p或q”是真命題,“p且q”是假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a+
(-x2-4x)
和g(x)=
4x
3
+1,已知當(dāng)x∈[-4,0]時,恒有f(x)≤g(x),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案