【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B.
(I)求角A;
(Ⅱ)若a=4 ,b+c=8,求△ABC 的面積.
【答案】∵2sinAcosB=2sinC﹣sinB,
∵由正弦定理可得:2acosB=2c﹣b,即:cosB= ,
又∵cosB= ,
∴ = ,解得:b2+c2﹣a2=bc,
∴cosA= = = ,
又∵A∈(0,π),
∴A=
(Ⅱ)∵由余弦定理可得:a2=b2+c2﹣2bccosA,a=4 ,b+c=8,
∴(4 )2=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,
∴bc= ,
∴△ABC 的面積S= bcsinA= =
【解析】(I)由正弦定理化簡已知等式可得cosB= ,結(jié)合余弦定理可求b2+c2﹣a2=bc,可求cosA,結(jié)合范圍A∈(0,π),可求A的值.(Ⅱ)由已知及余弦定理可得bc= ,進而利用三角形面積公式即可計算得解.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 向右平移 個單位后得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間[a,b](b>a)上的值域是 ,則b﹣a的最小值m和最大值M分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點在坐標(biāo)原點,焦點F在y軸正半軸上,過點F的直線交拋物線于A,B兩點,線段AB的長是8,AB的中點到x軸的距離是3.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線m在y軸上的截距為6,且與拋物線交于P,Q兩點,連結(jié)QF并延長交拋物線的準(zhǔn)線于點R,當(dāng)直線PR恰與拋物線相切時,求直線m的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1, ,若邊BC上一點D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三個實根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(I)以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(Ⅰ)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(Ⅱ)試運用獨立性檢驗的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)?并說明理由.
參考公式與臨界值表:K2= .
p(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+3|﹣|2x﹣a|,a∈R.
(1)若不等式f(x)≤﹣5的解集非空,求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點(﹣ ,0)對稱,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有A,B,C,D,E五輛汽車,其中A、B兩輛汽車的車牌尾號均為1,C、D兩輛汽車的車牌尾號均為2,E車的車牌尾號為6,已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,且五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com