7.已知某中學(xué)高三文科班學(xué)生共800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機數(shù)表從總抽取100人進行成績抽樣調(diào)查,先將800人按001,002,…,800進行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你一次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
84 42 17 53 31   57 24 55 06 88   77 04 74 47 67   21 76 33 50 25  83 92 12 06 76
63 01 63 78 59   16 95 56 67 19   98 10 50 71 75   12 86 73 58 07  44 39 52 38 79 
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個等級,橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率30%,求a,b的值.
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學(xué)生中,已知a≥10,b≥8,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

分析 (1)利用隨機數(shù)表法能求出最先檢查的3個人的編號.
(2)①$\frac{7+9+a}{100}$=30%,能求出a,由此能求出b.
②先求出a+b=100-(7+20+5)-(9+8+16)-4=31,再由a≥10,b≥8,利用列舉法求出a,b的搭配種數(shù),設(shè)a≥10,b≥8時,數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少為事件A,利用列舉法能求出數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

解答 解:(1)從第8行第7列的數(shù)開始向右讀,第一個編號為785,符合;第二個編號為916,不符合;
第三個編號為955,不符合;第四個編號為667,符合;第五個編號為199,符合.
∴最先檢查的3個人的編號依次為:785,667,199.
(2)①$\frac{7+9+a}{100}$=30%,解得a=14.
b=100-30-(20+18+4)-(5+6)=17.
②a+b=100-(7+20+5)-(9+8+16)-4=31,
∵a≥10,b≥8,
∴a,b的搭配:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),
(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共有14種,
設(shè)a≥10,b≥8時,數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少為事件A,
數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)為7+9+a,及格人數(shù)為5+6+b,
數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少即:16+a<11+b,所以a<b-5,
所以有(10,21),(11,20),(12,19)共3種,
∴數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率p(A)=$\frac{3}{14}$.

點評 本題考查隨機數(shù)數(shù)的應(yīng)用,考查概率的求法,基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)S一對不同顏色的均勻的骰子,計算:
(1)所得的點數(shù)中一個恰是另一個的3倍的概率;
(2)兩粒骰子向上的點數(shù)不相同的概率;
(3)所得點數(shù)的和為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若x,y滿足$\left\{\begin{array}{l}x-y≤0\;,\;\;\\ x+y≤1\;,\;\;\\ x≥0\;,\;\;\end{array}\right.$則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則一定有( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相同
C.$\overrightarrow{a}$=-$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相反

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a是實數(shù),函數(shù)f(x)=2a|x|+2x-a,若函數(shù)y=f(x)有且僅有兩個零點,則實數(shù)a的取值范圍是a<-1或a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱ABCDE
銷售額x (千萬元)35679
利潤額y (百萬元)23345
(I)畫出散點圖;
(Ⅱ)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;
(Ⅲ)若該公司還有一個零售店某月銷售額為11千萬元,試估計它的利潤額是多少?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=200)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在?ABCD中,點E為邊AB的中點,BD與CE交于點P,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),則2x+y=$\frac{5}{3}$;若點Q是△BCP內(nèi)部(包括邊界)一動點,且$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n∈R),則m+2n的取值范圍為[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=kx+lnx在區(qū)間(2,+∞)上單調(diào)遞減,則k的取值范圍是(  )
A.(-∞,-$\frac{1}{2}}$]B.(-∞,-1]C.[${\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.把函數(shù)y=sinx(x∈R)的圖象上所有點的橫坐標(biāo)縮短到原來的$\frac{1}{3}$倍(縱坐標(biāo)不變),再把所得圖象上所有點向左平行移動$\frac{π}{3}$個單位長度,得到的圖象所表示的函數(shù)是(  )
A.y=sin($\frac{1}{3}$x+$\frac{π}{3}$),x∈RB.y=sin(3x+$\frac{π}{3}$),x∈RC.y=sin(3x+$\frac{π}{9}$),x∈RD.y=-sin3x,x∈R

查看答案和解析>>

同步練習(xí)冊答案