【題目】已知函數(shù).
(1)若的圖像過點,且在點處的切線方程為,試求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若函數(shù)恒成立,求整數(shù)的最小值.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)1
【解析】
(1)根據(jù)且求得函數(shù)解析式,分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)函數(shù)恒成立等價于在區(qū)間內(nèi)恒成立,根據(jù)零點存在定理確定極值點的范圍,可得的范圍,從而可得結(jié)果.
(1)函數(shù)過點可知,①,,
∴,,②,聯(lián)立①②可得,
所以,函數(shù)的定義域為,
可知,,,,
可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
(2)由可知,
因為,所以原命題等價于在區(qū)間內(nèi)恒成立.
設(shè),
可設(shè),在單調(diào)遞增,且,,
所以存在唯一的,使得
且當(dāng)時,,單調(diào)遞增,
當(dāng),,單調(diào)遞減,
所以當(dāng)時,有極大值,也為最大值,且
又,所以,∴,可知,所以的最小值為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將編號為1,2,…,18的18名乒乓球運(yùn)動員分配在9張球臺上進(jìn)行單打比賽,規(guī)定每一張球臺上兩選手編號之和均為大于4的平方數(shù).記{7號與18號比賽}為事件p.則p為( ).
A. 不可能事件 B. 概率為的隨機(jī)事件
C. 概率為的隨機(jī)事件 D. 必然事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為棱上的一點,且,為棱的中點,為棱上的一點,若平面,是邊長為4的正三角形,,.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績雷達(dá)圖如圖所示,下面敘述一定不正確的是( )
A.甲的物理成績領(lǐng)先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學(xué)、歷史
D.對甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構(gòu)成的四邊形恰為正方形,則橢圓的離心率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年月日,某地援鄂醫(yī)護(hù)人員,,,,,,人(其中是隊長)圓滿完成抗擊新冠肺炎疫情任務(wù)返回本地,他們受到當(dāng)?shù)厝罕娕c領(lǐng)導(dǎo)的熱烈歡迎.當(dāng)?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護(hù)人員和接見他們的一位領(lǐng)導(dǎo)共人站一排進(jìn)行拍照,則領(lǐng)導(dǎo)和隊長站在兩端且相鄰,而不相鄰的排法種數(shù)為( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形中,,是邊上異于端點的動點,,將矩形沿折疊至處,使面(如圖2).點滿足,.
(1)證明:;
(2)設(shè),當(dāng)為何值時,四面體的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司為了方便市民出行、科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為研究車輛發(fā)車間隔時間(分鐘)與乘客等候人數(shù)(人)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間(分鐘) | ||||||
等候人數(shù)(人) |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過,則稱所求線性回歸方程是“恰當(dāng)回歸方程”.
(1)從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時間之差大于的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;
(3)在(2)的條件下,為了使等候的乘客不超過人,則間隔時間最多可以設(shè)置為多少分鐘?(精確到整數(shù))
參考公式:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com