數(shù)列{an}滿足a1=1,an+1=2an+1,
①求證{an+1}是等比數(shù)列;
②求數(shù)列{an}的通項(xiàng)公式.
分析:(1)將數(shù)列遞推式兩邊同時(shí)加上1,化簡后再作商可得數(shù)列{an+1}是等比數(shù)列;
(2)根據(jù)(1)可求出數(shù)列{an+1}的通項(xiàng),從而可求出數(shù)列{an}的通項(xiàng)公式.
解答:解:(1)由題意知an+1=2an+1,則an+1+1=2an+1+1=2(an+1)
an+1+1
an+1
=2,且a1+1=2,
∴數(shù)列{an+1}是以2為首項(xiàng),以2為公比的等比數(shù)列.
(2)由(1)得an+1=2×2n-1=2n
則an=2n-1.
點(diǎn)評(píng):本題考查了構(gòu)造新的等比數(shù)列求出通項(xiàng)問題,數(shù)列的遞推公式為:an+1=Aan+B,其中A和B是常數(shù),構(gòu)造出 an+1+k=A(an+k)式子,再證明數(shù)列{an+k}是等比數(shù)列即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>0,數(shù)列{an}滿足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(4)證明:對(duì)于一切正整數(shù)n,2an≤bn+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,an=
an-1an-2
(n≥3)
,則a17等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,數(shù)列{an}滿足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知數(shù)列{an}極限存在且大于零,求A=
lim
n→∞
an
(將A用a表示);
(II)設(shè)bn=an-A,n=1,2,…,證明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
對(duì)n=1,2,…
都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求證{bn}為等比數(shù)列;    
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
4
3
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2013
的整數(shù)部分是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案