17.已知函數(shù)f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(1)若命題“l(fā)og2g(x)<1”是真命題,求x的取值范圍;
(2)設命題p:?x∈(1,+∞),f(x)<0或g(x)<0;,若P是真命題,求m的取值范圍.

分析 (I)由于命題“l(fā)og2g(x)≥1”是假命題,由log2g(x)≥1解出,進而得出;
(II)由于當x>1時,g(x)>0,要p是真命題,可得f(x)<0在(1,+∞)恒成立,可得m的取值范圍

解答 解:∵命題“l(fā)og2g(x)<1”是真命題,即${log_2}({2^x}-2)<1$,
∴0<2x-2<2,解得1<x<2,∴x的取值范圍是(1,2);
(2)∵p是真命題,
當x>1時,g(x)=2x-2>0,要使p是真命題,必須f(x)<0
∵m<-1,∴2m<-m-3,∴f(x)<0⇒x<2m或x>-m-3
∴-m-3≤1,解得-1>m≥-4
m的取值范圍:-4≤m<-1.

點評 本題考查了已知命題真假求參數(shù)范圍的方法,同時又涉及到不等式及函數(shù)的基礎(chǔ)知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.下列四組函數(shù)中表示同一個函數(shù)的是( 。
A.f(x)=|x|與$g(x)=\sqrt{x^2}$B.f(x)=x0與g(x)=1
C.$f(x)=\sqrt{x-1}\sqrt{x+1}$與$g(x)=\sqrt{{x^2}-1}$D.$f(x)=\root{3}{x^3}$與$g(x)=\sqrt{x^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.袋子中裝有大小相同的6個小球,2紅4白,現(xiàn)從中有放回的隨機摸球3次,每次摸出1個小球,則至少有2次摸出白球的概率為$\frac{20}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果圓錐曲線$\frac{{x}^{2}}{m-1}+\frac{{y}^{2}}{m+8}$=1的焦距是與m無關(guān)的非零常數(shù),那么它的焦點坐標是(  )
A.(0,±3)B.(±3,0)C.(0,±$\sqrt{7}$)D.(±$\sqrt{7}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.“a≠1或b≠3”是“a•b≠3”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)y=0.5|1-x|+m的圖象與x軸有公共點,則m的取值范圍是( 。
A.-1≤m<0B.m≤-1C.m≥1D.0<m≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.給出下列四個命題:
①已知M={(x,y)|$\frac{y-3}{x-2}$=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,則a=-6;
②已知點A(x1,y1),B(x2,y2),則以AB為直徑的圓的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0;
③$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a≠b)表示焦點在x軸上的橢圓;
④已知拋物線y2=2px(p>0)的焦點弦AB的兩端點坐標分別為A(x1,y2),B(x2,y2),則$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-4
其中的真命題是②④.(把你認為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知命題p:?x∈R,x2+x+1>0;命題q:?x∈R,x3=1-x2,下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線2ax-by+2=0(a>0,b>0)平分圓x2+y2+2x-4y+1=0,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

同步練習冊答案