【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,,是的中點(diǎn).
(Ⅰ)求證:平面;
(II)在線段上是否存在一點(diǎn),使三棱錐的體積為?若存在,求出的長;若不存在,請說明理由.
【答案】見解析
【解析】 (Ⅰ)如圖,連結(jié)BD,由四邊形是菱形,,是的中點(diǎn),得, …………2分
因?yàn)樗倪呅?/span>是矩形,平面⊥平面,且交線為AD,
所以平面,又平面,所以. ……………4分
又,所以平面.……………………6分
(Ⅱ)假設(shè)線段上存在一點(diǎn),使三棱錐的體積為,設(shè),
由(Ⅰ)得平面,由于,所以,……9分
因?yàn)?/span>,所以,解得,即的長為.……12分
【命題意圖】本題考查平面和平面垂直的性質(zhì)定理、直線和平面垂直的判定定理、三棱錐的體積等基礎(chǔ)知識,意在考查空間想象能力和運(yùn)算求解能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌的手機(jī)專賣店采用分期付款方式經(jīng)銷手機(jī),從參與購手機(jī)活動的100名顧客中進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示,已知分3期付款的頻率為0.2,若顧客采用一次付清,其利潤為200元,采用2期或3期付款,其利潤為250元,采用4期或5期付款,其利潤為300元.
付款期數(shù) | 1 | 2 | 3 | 4 | 5 |
頻數(shù) | 40 | 20 | a | b | 10 |
(I)若以上表計(jì)算出的頻率近似代替概率,從購買手機(jī)的顧客(數(shù)量較多)中隨機(jī)抽取3位顧客,求事件“至多有1位采用分3期付款”的概率;
(II)按分層抽樣的方式從這100位顧客中抽取5人,再從抽出的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量 =(﹣1, ), =(cosA,sinA).若 ⊥ ,且acosB+bcosA=csinC,則角A,B的大小分別為( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)設(shè),若,都有 成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式mx2+2x+6m>0,在下列條件下分別求m的值或取值范圍:
(1)不等式的解集為{x|2<x<3};
(2)不等式的解集為R.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(1)求圓的方程;
(2)設(shè)直線與圓相交于、兩點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn)?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從向陽小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,為制定階梯電價(jià)提供數(shù)據(jù),發(fā)現(xiàn)其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標(biāo)明數(shù)據(jù),你認(rèn)為t=( )
A.0.0041
B.0.0042
C.0.0043
D.0.0044
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角三角形ABC中角A,B,C對邊長分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關(guān)于x=﹣ 對稱;④圖象關(guān)于點(diǎn)(﹣ ,0)對稱.
其中正確的是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com