(本小題滿分12分)
對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域?yàn)閇];那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;
(3)若函數(shù)是閉函數(shù),求實(shí)數(shù)的取值范圍.

(1)[-1,1]。(2)函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。(3)

解析試題分析:(1)根據(jù)y=-x3的單調(diào)性,假設(shè)區(qū)間為[a,b]滿足,求a、b的值.
(2)取一特殊值x1=1,x2=10,代入驗(yàn)證不滿足條件即可證明不是閉函數(shù).
(3)根據(jù)閉函數(shù)的定義,得到a,b,k的關(guān)系式,然后轉(zhuǎn)換為方程有兩個(gè)不等的實(shí)數(shù)根來(lái)得到參數(shù)的范圍。
解:
(1)由題意,在[]上遞減,則解得
所以,所求的區(qū)間為[-1,1]..............................................2分
(2)
,
不是上的減函數(shù)。

不是上的增函數(shù),
所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。.............4分
(3)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域?yàn)閇],即,為方程的兩個(gè)實(shí)根,
即方程有兩個(gè)不等的實(shí)根。
當(dāng)時(shí),有,解得。...............................7分
當(dāng)時(shí),有,無(wú)解。........................................10分
綜上所述,....................................12分
考點(diǎn):本試題主要考查了新定義的運(yùn)用,通過(guò)給定的新定義來(lái)解題.這種題重要考查學(xué)生的接受新內(nèi)容的能力.
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解閉函數(shù)的概念,并能結(jié)合所學(xué)知識(shí),轉(zhuǎn)換為不等式以及對(duì)應(yīng)的函數(shù)關(guān)系式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實(shí)數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f (x)=loga(a>0,a≠1).
(1)求函數(shù)f (x)的定義域.
(2)求使f (x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性,并求出單調(diào)區(qū)間 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知函數(shù)
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/9/jdksl1.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知函數(shù)其中a>0,且a≠1,
(1)求函數(shù)的定義域;
(2)當(dāng)0<a<1時(shí),解關(guān)于x的不等式
(3)當(dāng)a>1,且x∈[0,1)時(shí),總有恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù),且.
(Ⅰ)求的值,并用分段函數(shù)的形式來(lái)表示;
(Ⅱ)在如圖給定的直角坐標(biāo)系內(nèi)作出函數(shù)的草圖;

(III)由圖象寫(xiě)出函數(shù)的奇偶性及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知
(Ⅰ)求;
(Ⅱ)判斷并證明的奇偶性與單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

證明函數(shù)f(x)=x+在(0,1)上為減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案