【題目】如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都等于2,D在AC1上,F為BB1的中點(diǎn),且FD⊥AC1,有下述結(jié)論:
①AC1⊥BC;
②=1;
③平面FAC1⊥平面ACC1A1;
④三棱錐D-ACF的體積為.
其中正確結(jié)論的個(gè)數(shù)為( )
A. 1 B. 2
C. 3 D. 4
【答案】C
【解析】BC⊥CC1,但BC不垂直于AC,故BC不垂直于平面ACC1A1,所以AC1與BC不垂直,故①錯(cuò)誤;
連接AF,C1F,可得AF=C1F=.
因?yàn)?/span>FD⊥AC1,所以可得D為線段AC1的中點(diǎn),故②正確;
取AC的中點(diǎn)為H,連接BH,DH,
因?yàn)樵撊庵钦庵,所?/span>CC1⊥底面ABC,
因?yàn)?/span>BH底面ABC,所以CC1⊥BH,
因?yàn)榈酌?/span>ABC為正三角形,可得BH⊥AC,
又AC∩CC1=C,所以BH⊥側(cè)面ACC1A1.
因?yàn)?/span>D和H分別為AC1,AC的中點(diǎn),所以DH∥CC1∥BF,
DH=BF=CC1,可得四邊形BFDH為平行四邊形,所以FD∥BH,
所以可得FD⊥平面ACC1A1,因?yàn)?/span>FD平面FAC1,
所以平面FAC1⊥平面ACC1A1,故③正確;
VD-ACF=VF-ADC=·FD·S△ACD=,故④正確.
即正確結(jié)論的個(gè)數(shù)為3個(gè).
本題選擇C選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為拋物線C:的焦點(diǎn),過(guò)點(diǎn)的動(dòng)直線與拋物線C交于,兩點(diǎn),如圖.當(dāng)直線與軸垂直時(shí),.
(1)求拋物線C的方程;
(2)已知點(diǎn),設(shè)直線PM的斜率為,直線PN的斜率為.請(qǐng)判斷是否為定值,若是,寫出這個(gè)定值,并證明你的結(jié)論;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型娛樂(lè)場(chǎng)有兩種型號(hào)的水上摩托,管理人員為了了解水上摩托的使用及給娛樂(lè)城帶來(lái)的經(jīng)濟(jì)收入情況,對(duì)該場(chǎng)所最近6年水上摩托的使用情況進(jìn)行了統(tǒng)計(jì),得到相關(guān)數(shù)據(jù)如表:
(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測(cè)該娛樂(lè)場(chǎng)2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來(lái)越多,該娛樂(lè)場(chǎng)根據(jù)自身的發(fā)展需要,準(zhǔn)備重新購(gòu)進(jìn)一批水上摩托,其型號(hào)主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價(jià)格分別為1萬(wàn)元、1.2萬(wàn)元.根據(jù)以往經(jīng)驗(yàn),每輛水上摩托的使用年限不超過(guò)四年.娛樂(lè)場(chǎng)管理部對(duì)已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進(jìn)行統(tǒng)計(jì),使用年限如條形圖所示:
已知每輛水上摩托從購(gòu)入到淘汰平均年收益是0.8萬(wàn)元,若用頻率作為概率,以每輛水上摩托純利潤(rùn)(純利潤(rùn)=收益-購(gòu)車成本)的期望值為參考值,則該娛樂(lè)場(chǎng)的負(fù)責(zé)人應(yīng)該選購(gòu)Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線方程為,其中, .參考數(shù)據(jù),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論錯(cuò)誤的是( )
A. 命題“若x2-3x-4=0,則x=4”的逆否命題是“若x≠4,則x2-3x-4≠0”
B. 命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆命題為真命題
C. “x=4”是“x2-3x-4=0”的充分條件
D. 命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;
(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為自然對(duì)數(shù)的底數(shù), ).
(1)設(shè)為的導(dǎo)函數(shù),證明:當(dāng)時(shí), 的最小值小于0;
(2)若恒成立,求符合條件的最小整數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com