求證:當(dāng)x∈R時(shí),任意f(x)都可以寫成一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和.
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先假設(shè)f(x)=g(x)+h(x)是存在的,再根據(jù)函數(shù)的奇偶性構(gòu)造方程組,求出g(x)和h(x)的解析式,再由奇(偶)進(jìn)行驗(yàn)證即可.
解答: 證明:設(shè)g(x)是R上的奇函數(shù),h(x)是R上的偶函數(shù),
先假設(shè)f(x)=g(x)+h(x)是存在的,則f(-x)=g(-x)+h(-x),
∵奇函數(shù)性質(zhì):g(x)=-g(-x),
偶函數(shù)性質(zhì):h(x)=h(-x)
f(x)+f(-x)=2h(x)
f(x)-f(-x)=2g(x) 
,
解得g(x)=
f(x)-f(-x)
2
,h(x)=
f(x)+f(-x)
2
,
則驗(yàn)證得,g(x)為R上的奇函數(shù),h(x)為R上的偶函數(shù),
由此我們得出結(jié)論,當(dāng)x∈R時(shí),對(duì)任意的f(x),我們能夠構(gòu)造這么兩個(gè)函數(shù) 
g(x)=
f(x)-f(-x)
2
是奇函數(shù),h(x)=
f(x)+f(-x)
2
是偶函數(shù),且f(x)=g(x)+h(x).
點(diǎn)評(píng):本題是探究性的證明題,考查了函數(shù)奇偶性的定義及性質(zhì)的應(yīng)用,以及方程思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖所表示的程序,則所得的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x-1)10的展開式中第6項(xiàng)系的系數(shù)是( 。
A、-
C
5
10
B、
C
5
10
C、-
C
6
10
D、
C
6
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設(shè)E為PC中點(diǎn),點(diǎn)F在線段PD上且PF=2FD.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)設(shè)二面角A-CF-D的大小為θ,若|cosθ|=
42
14
,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,又拋物線C2:x2=2py(p>0)通徑所在直線被橢圓C1所截得的線段長(zhǎng)為
4
3
33

(1)求橢圓C1和拋物線C2的方程;
(2)過(guò)點(diǎn)A的直線L與拋物線C2交于B、C兩點(diǎn),拋物線C2在點(diǎn)B、C處的切線分別為l1、l2,且l1與l2交于點(diǎn)P.是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo)),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某辦公室共有6人,組織出門旅行,旅行車上的6個(gè)座位如圖所示,其中甲、乙兩人的關(guān)系較為親密,要求在同一排且相鄰,則不同的安排方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,對(duì)人體健康和大氣環(huán)境質(zhì)量的影響很大.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方以下空氣質(zhì)量為一級(jí);在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從360天的市區(qū)PM2.5監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉).
(1)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記ξ表示空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求ξ的分布列;
(2)以這15天的PM2.5日均值來(lái)估計(jì)這360天的空氣質(zhì)量情況,則其中大約有多少天的空氣質(zhì)量達(dá)到一級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的兩個(gè)焦點(diǎn)是(0,-
3
)和(0,
3
),并且經(jīng)過(guò)點(diǎn)(
3
2
 ,  1)
,拋物線的頂點(diǎn)E在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F.
(Ⅰ)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求
AG
HB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元),有如下表所示的統(tǒng)計(jì)資料:
使用年限x(年) 2 3 4 5 6
維修費(fèi)用y(萬(wàn)元) 2.2 3.8 5.5 6.5 7.0
由資料知
y
對(duì)x呈線性相關(guān)關(guān)系,則其回歸直線方程
y
=bx+a為
 
 (其中2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

同步練習(xí)冊(cè)答案